Verhältnisgleichungen lösen
Verhältnisgleichungen lösen
Beschreibung Verhältnisgleichungen lösen
Nach dem Schauen dieses Videos wirst du in der Lage sein, eine gegebene Verhältnisgleichung mittels Multiplikation über Kreuz zu lösen.
Zunächst lernst du, wie du zu einem gegebenen Problem die jeweilige Verhältnisgleichung aufstellen kannst. Anschließend lösen wir diese, indem wir über Kreuz multiplizieren. Abschließend lernst du, wie du die resultierende Gleichung durch Äquivalenzumformung nach der gesuchten Größe umstellst.
Lerne mit Yeti Meinhold, wie du mittels Multiplikation über Kreuz Verhältnisgleichungen lösen kannst
Das Video beinhaltet Schlüsselbegriffe, Bezeichnungen und Fachbegriffe wie die Verhältnisgleichung, den Bruch, die Multiplikation über Kreuz, die Äquivalenzumformung und die Gleichung.
Bevor du dieses Video schaust, solltest du bereits wissen, wie eine Gleichung mittels Äquivalenzumformung umgestellt wird.
Nach diesem Video wirst du darauf vorbereitet sein, das Lösen linearer Gleichungen unter Verwendung mathematischer Regeln zu lernen.
Transkript Verhältnisgleichungen lösen
Der Yeti Meinhold ist verzweifelt. Warum? In zwei Stunden hat er ein Date mit der schönen Rezna. Und gerade hat es angefangen zu schneien. Na und? Was ist schon ein bisschen Schnee, wenn man ein Date mit der Yetidame seiner Träume hat? Nun, Yetiregel Nummer fünf besagt: Fallen 120 Zentimeter Schnee, bleib im Bett und trinke Tee. Fällt das Date also in den Schnee? Der Yeti-Wetterbericht kündigt für den Abend konstanten Schneefall an, 30 Zentimeter pro halbe Stunde. Und die schöne Rezna erwartet ihn in zwei Stunden. Wie viel Neuschnee wird bis dahin gefallen sein? Lasst uns Meinhold bei dieser Überlegung helfen. Dazu können wir eine Verhältnisgleichung aufstellen. Hierbei müssen wir für die Zähler und Nenner, beziehungsweise Dividend und Divisor jeweils dieselben Größen nutzen. In diesem Fall wollen wir das Verhältnis von Schneefall in Zentimeter und Zeit in Stunden ausdrücken. Welche Informationen sind gegeben? Wir wissen, dass in einer halben Stunde 30 Zentimeter Schnee fällt. Wie viel Schnee fällt dann in zwei Stunden? Meinhold weiß genau, wie man solch eine Gleichung löst. Er hat dir einen Hinweis im Schnee hinterlassen. Um die gesuchte Größe zu finden, kannst du überkreuz multiplizieren. Verwechsle das übrigens nicht mit dem Kürzen überkreuz, das wiederum hilft dir bei der Multiplikation von Brüchen. Stelle die beiden Produkte wieder als Gleichung dar. 30 * 2 = 60 und 0,5 * x = 0,5x. Um nach x aufzulösen, dividierst du beide Seiten durch 0,5. x = 120, der Neuschnee wird nach zwei Stunden als 120 Zentimeter hoch sein. So ein Pech für Meinhold! Dann stapft er eben einfach schon vorher zu Rezna, damit er es gerade noch schafft, ohne die Regel zu brechen. Er beschließt loszugehen, wenn der Neuschnee genau 100 Zentimeter hoch ist. Doch wann wird das sein? Stellen wir eine neue Verhältnisgleichung auf. Dieses Mal ist die Zeit die gesuchte Größe. Wieder multiplizieren wir überkreuz um zu lösen. Wir erhalten 30x = 0,5 * 100. Wir sehen, Meinhold muss in 1 2/3 Stunden, also in einer Stunde und 40 Minuten losstapfen. Das heißt, er muss sich zwanzig Minuten früher als geplant auf den Weg machen. Endlich ist auch Rezna so weit. Doch Meinhold hat in der Aufregung Regel Nummer sieben vergessen: Zu früh vor der Tür macht einen Eisblock aus dir.
Verhältnisgleichungen lösen Übung
-
Berechne mithilfe einer Verhältnisgleichung, wie viel Neuschnee fallen wird.
TippsDu kannst wie folgt über Kreuz multiplizieren:
$ \frac ab = \frac cd ~ \xrightarrow{\text{Multiplikation }\ddot{\text{u}}\text{ber Kreuz}} ~ a\cdot d = c\cdot b$
Eine lineare Gleichung mit einer Unbekannten kannst du wie folgt umstellen:
$ \begin{array}{rcll} 5x &=& 3\cdot 10 & \\ 5x &=& 30 & \vert :5 \\ x &=& 6 & \end{array} $
Hinweis: Der Grund, dass das funktioniert ist der, dass $5x$ eine Kurzschreibweise für $5\cdot x$ ist. Du wendest also durch das Dividieren die Gegenoperation der Multiplikation an.
LösungFolgende Angaben sind uns bekannt:
- Das Date mit der schönen Resna ist in $\mathbf{2}$ Stunden.
- Der angekündigte Schneefall beträgt $\mathbf{30\ \text{cm}}$ pro halbe Stunde.
- Die 5. Yeti-Regel lautet: Fallen $\mathbf{120\ \text{cm}}$ Schnee, bleib im Bett und trinke Tee.
- $x$ ist die Höhe des Neuschnees, der in zwei Stunden gefallen sein wird (in Zentimeter).
$\frac{30}{0,5}=\frac{x}{2}$
Um die Unbekannte $x$, also die Höhe des gefallenen Neuschnees in zwei Stunden zu berechnen, multiplizieren wir über Kreuz. Daraus folgt:
$30\cdot 2=x\cdot 0,5$
Nun stellen wir diese Gleichung nach $x$ um und erhalten:
$ \begin{array}{rcll} 30\cdot 2 &=& x\cdot 0,5 & \\ 60 &=& x\cdot 0,5 & \vert :0,5 \\ 120 &=& x & \end{array} $
In zwei Stunden wird also $120\ \text{cm}$ Neuschnee gefallen sein. Demnach würde Meinhold die 5. Yeti-Regel brechen, wenn er in zwei Stunden zu Resna stapfen würde.
-
Bestimme, in wie vielen Stunden $100\ \text{cm}$ Schnee gefallen sein wird.
TippsEine Verhältnisgleichung kannst du mittels einer Multiplikation über Kreuz lösen.
Schau dir folgendes Beispiel an:
$ \begin{array}{rcl} \frac 12 &=&\frac x3 \\ 1\cdot 3 &=& x\cdot 2 \end{array} $
Wenn deine Ausgangsgleichung eine Verhältnisgleichung der Form $\frac ab=\frac xd$ ist, wobei $a$, $b$ und $d$ Zahlen und $x$ eine Variable ist, kannst du wie folgt vorgehen:
- Über Kreuz multiplizieren, um die Brüche aufzulösen.
- Resultierende Gleichung nach der Unbekannten $x$ auflösen.
Hier siehst du ein Beispiel für den 2. Schritt:
$\begin{array}{rcll} 6x & = & 18 & | :6\\ x & = &3 \end{array}$
LösungFolgende Angaben sind uns bekannt:
- Der angekündigte Schneefall beträgt $\mathbf{30\ \text{cm}}$ pro halbe Stunde.
- Die Höhe des gefallenen Neuschnees innerhalb der Zeit von $x$ Stunden beträgt $\mathbf{100\ \text{cm}}$.
- $x$ ist die Zeit, die vergangen sein wird, wenn $100\ \text{cm}$ Neuschnee gefallen ist (in Stunden).
$\frac{30}{0,5}=\frac{100}{x}$
Die darin enthaltene Variable $x$ steht für die gesuchte Zeit, die vergangen sein wird, wenn $100\ \text{cm}$ Schnee gefallen ist. Diese wird nun mittels Multiplikation über Kreuz berechnet. Die Multiplikation über Kreuz liefert folgende Gleichung:
$30\cdot x=100\cdot 0,5$
Diese Gleichung stellen wir nun nach der Variablen $x$ um und erhalten:
$ \begin{array}{rcll} 30\cdot x &=& 100\cdot 0,5 & \\ 30x &=& 50 & \vert :30 \\ x &=& \frac{50}{30} & \\ x &=& \frac 53 & \\ x &=& 1\frac 23 \end{array} $
Meinhold muss demnach in $1\frac 23$ Stunden, also in einer Stunde und $40$ Minuten, zu Resna stapfen.
-
Bestimme jeweils die Gleichung, welche aus der Multiplikation über Kreuz resultiert.
TippsBei der Multiplikation über Kreuz gehst du wie folgt vor:
- Multipliziere den Zähler auf der linken Seite der Verhältnisgleichung mit dem Nenner auf der rechten Seite der Verhältnisgleichung $\left(\frac ab\searrow\frac cd\right)$ und schreibe das Produkt auf die linke Seite der resultierenden Gleichung.
- Multipliziere den Zähler auf der rechten Seite der Verhältnisgleichung mit dem Nenner auf der linken Seite der Verhältnisgleichung $\left(\frac ab\swarrow\frac cd\right)$ und schreibe das Produkt auf die rechte Seite der resultierenden Gleichung.
Schau dir das folgende Beispiel an:
$\frac 1x=\frac 2x$
Die Multiplikation über Kreuz liefert die Gleichung $1x=2x$.
LösungDie Multiplikation über Kreuz ist ein mathematischer Vorgang, um eine Verhältnisgleichung so umzuformen, dass anschließend keine Brüche oder Bruchterme vorliegen.
Dabei gehst du wie folgt vor:
- Multipliziere den Zähler auf der linken Seite der Verhältnisgleichung mit dem Nenner auf der rechten Seite der Verhältnisgleichung $\left(\frac ab\searrow\frac cd\right)$ und schreibe das Produkt auf die linke Seite der resultierenden Gleichung.
- Multipliziere den Zähler auf der rechten Seite der Verhältnisgleichung mit dem Nenner auf der linken Seite der Verhältnisgleichung $\left(\frac ab\swarrow\frac cd\right)$ und schreibe das Produkt auf die rechte Seite der resultierenden Gleichung.
Wir erhalten für unsere Beispiele folgende Lösungen:
- $\frac x2=\frac 35 \Leftrightarrow 5x=6$
- $\frac 2x=\frac 35 \Leftrightarrow 10=3x$
- $\frac 3x=\frac 27 \Leftrightarrow 21=2x$
- $\frac x3=\frac 27 \Leftrightarrow 7x=6$
-
Ermittle die gesuchte Verhältnisgleichung und löse diese mittels Multiplikation über Kreuz.
TippsBilde folgende Verhältnisse:
- $\frac{\text{Lohn}}{\text{Arbeitsstunden}}$
- $\frac{\text{Anzahl Perlenketten}}{\text{Dauer der Herstellung}}$
Stelle die Verhältnisgleichungen zunächst mittels Multiplikation über Kreuz um. Löse sie anschließend nach der Unbekannten $x$ auf.
Schau dir folgendes Beispiel an:
$ \begin{array}{rcll} \frac 45 &=& \frac x{10} & \vert \ \text{ Multiplikation }\ddot{\text{u}}\text{ber Kreuz} \\ 40 &=& 5x & \vert :5 \\ 8 &=& x & \end{array} $
LösungHier siehst du die Rechnungen für die beiden Textaufgaben. Um die jeweilige Lösung zu bestimmen, stellen wir Verhältnisgleichungen auf und benutzen die Multiplikation über Kreuz.
Beispiel 1: Jana bekommt für ihren neuen Job als studentische Hilfskraft $24\ €$ für $2$ Arbeitsstunden.
Wie viel Euro bekommt Jana für $60$ Arbeitsstunden?
Wir bilden das Verhältnis von dem Lohn und den dazugehörigen Arbeitsstunden. Somit erhalten wir folgende Verhältnisgleichung:
$\frac{24}{2}=\frac{x}{60}$
Diese stellen wir zunächst mittels Multiplikation über Kreuz um. Anschließend lösen wir die Gleichung nach der Variablen $x$ auf.
$ \begin{array}{rcll} \frac{24}{2} &=& \frac{x}{60} & \\ 1440 &=& 2x & \vert :2 \\ 720 &=& x & \end{array} $
Beispiel 2: Frau Schön stellt Perlenketten her. Sie braucht für die Fertigung einer Perlenkette $1,5$ Stunden.
Wie viele Stunden braucht Frau Schön für die Herstellung von $30$ Perlenketten?
Wir bilden das Verhältnis von der Anzahl hergestellter Perlenketten und der dazugehörigen Herstellungsdauer. Somit erhalten wir folgende Verhältnisgleichung:
$\frac{1}{1,5}=\frac{30}{x}$
Diese stellen wir mittels Multiplikation über Kreuz um und erhalten die Lösung für die Variable $x$:
$ \begin{array}{rcll} \frac{1}{1,5} &=& \frac{30}{x} & \\ x &=& 45 & \end{array} $
-
Gib das Vorgehen bei einer Multiplikation über Kreuz an.
TippsSchau dir folgendes Beispiel an:
$\frac 56=\frac 1x \Leftrightarrow 5x=6$
Du kannst eine Verhältnisgleichung auch wie folgt schrittweise umstellen:
$ \begin{array}{rcll} \frac 56 &=& \frac 1x & \vert\cdot 6 \\ 5 &=& \frac {1\cdot 6}{x} & \vert\cdot x \\ 5\cdot x &=& 1\cdot 6 & \end{array} $
Dies ist auch die Erklärung dafür, warum die Möglichkeit der Über-Kreuz-Multiplikation funktioniert.
LösungBei der Multiplikation über Kreuz gehst du wie folgt vor:
- Multipliziere den Zähler auf der linken Seite der Verhältnisgleichung mit dem Nenner auf der rechten Seite der Verhältnisgleichung $\left(\frac ab\searrow\frac cd\right)$ und schreibe das Produkt auf die linke Seite der resultierenden Gleichung.
- Multipliziere den Zähler auf der rechten Seite der Verhältnisgleichung mit dem Nenner auf der linken Seite der Verhältnisgleichung $\left(\frac ab\swarrow\frac cd\right)$ und schreibe das Produkt auf die rechte Seite der resultierenden Gleichung.
Hier sieht du einige Beispiele:
- $\frac 16=\frac 2x \Leftrightarrow x=12$
- $\frac 27=\frac x3 \Leftrightarrow 6=7x$
- $\frac 19=\frac 1x \Leftrightarrow x=9$
-
Bestimme die gesuchte Zahl.
TippsEinen Term der Form $c(a-b)$ kannst du durch Anwendung des Distributivgesetzes wie folgt auflösen:
$c(a-b)=ca-cb$
Das Verhältnis von $a$ und $b$ wird mathematisch wie folgt dargestellt:
$\frac{a}{b}$
LösungWir suchen eine Zahl, für die folgender Zusammenhang gilt:
Die Differenz von der gesuchten Zahl $x$ und $2$ wird mit $4$ ins Verhältnis gesetzt. Dieses Verhältnis entspricht dem Verhältnis von $15$ und $2$.
Nun möchten wir diese Beschreibung Schritt für Schritt durchgehen und die entsprechende Gleichung aufstellen:
- Die Differenz von der gesuchten Zahl $x$ und $2$ ergibt $\mathbf{x-2}$.
- Diese Differenz wird mit $4$ ins Verhältnis gesetzt. Das ergibt $\mathbf{\frac{(x-2)}{4}}$.
- Dieses Verhältnis entspricht dem Verhältnis von $15$ und $2$. Das führt zu der Gleichung $\mathbf{\frac{(x-2)}{4}=\frac{15}{2}}$.
$ \begin{array}{rcll} \frac{(x-2)}{4} &=& \frac{15}{2} & \\ 2(x-2) &=& 15\cdot 4 & \\ 2x-4 &=& 60 & \vert +4 \\ 2x &=& 64 & \vert :2 \\ x &=& 32 & \end{array} $

Was sind Brüche?

Anteil, Bruchteil, Ganzes

Anteil, Bruchteil und Ganzes – Übung

Brüche und Anteile – Einführung

Brüche und Anteile

Brüche verstehen - Brüche als Teile eines Ganzen

Teilflächen von Vierecken als Brüche ausdrücken

Brüche und Anteile – Beispiele

Brüche und Anteile (Übungsvideo 1)

Brüche und Anteile (Übungsvideo 2)

Verhältnisse

Verhältnisse erweitern

Verhältnisse und ihre Umkehrungen

Verschiedene Verhältnisse vergleichen

Verhältnisse und Verhältnisgleichungen

Verhältnisgleichungen lösen

Brüche in den Taschenrechner richtig eingeben
10 Kommentare
ich habe angst vor dieser resna
uuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu
Uuuuuuuuuuuuuuuuuuzuzuzuuhuzzhhuzzhuzzhuzzhuzhhzzzuuhzhhuzhzhuhzhuzhuzhhzhhuzzhuzhhuuzhhhuzzhhzhhzuhhzzuhhzugzhguzhhuzhhuzhhzuhzhuzzhuhzh7zzhhu7u6hh77zzhhu76zzhu66zu7zuu7hhzzzuu7uhzu7zhbzuzzzu7z
dddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddd
die geile schnidde rasna xD