Über 1,6 Millionen Schüler*innen nutzen sofatutor!
  • 93%

    haben mit sofatutor ihre Noten in mindestens einem Fach verbessert

  • 94%

    verstehen den Schulstoff mit sofatutor besser

  • 92%

    können sich mit sofatutor besser auf Schularbeiten vorbereiten

Verhältnisgleichungen lösen

Verhältnisgleichungen einfach erklärt: Erfahre, wie man Verhältnisgleichungen anhand eines Yeti-Beispiels im Schnee aufstellt und löst. Lerne, wie verschiedene Größen miteinander in Beziehung gesetzt werden und wie man die gesuchten Werte berechnet. Das Ganze ist leicht verständlich erklärt - auch für Schülerinnen und Schüler in Deutschland. Wenn du Neugierig geworden bist, findest du all das und noch vieles mehr im folgenden Text!

Du willst ganz einfach ein neues Thema lernen
in nur 12 Minuten?
Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
  • Das Mädchen lernt 5 Minuten mit dem Computer 5 Minuten verstehen

    Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.

    92%
    der Schüler*innen hilft sofatutor beim selbstständigen Lernen.
  • Das Mädchen übt 5 Minuten auf dem Tablet 5 Minuten üben

    Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.

    93%
    der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert.
  • Das Mädchen stellt fragen und nutzt dafür ein Tablet 2 Minuten Fragen stellen

    Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.

    94%
    der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.
Bewertung

Ø 4.1 / 86 Bewertungen
Die Autor*innen
Avatar
Team Digital
Verhältnisgleichungen lösen
lernst du in der 5. Klasse - 6. Klasse - 7. Klasse - 8. Klasse

Verhältnisgleichungen lösen Übung

Du möchtest dein gelerntes Wissen anwenden? Mit den Aufgaben zum Video Verhältnisgleichungen lösen kannst du es wiederholen und üben.
  • Berechne mithilfe einer Verhältnisgleichung, wie viel Neuschnee fallen wird.

    Tipps

    Du kannst wie folgt über Kreuz multiplizieren:

    $ \frac ab = \frac cd ~ \xrightarrow{\text{Multiplikation }\ddot{\text{u}}\text{ber Kreuz}} ~ a\cdot d = c\cdot b$

    Eine lineare Gleichung mit einer Unbekannten kannst du so umstellen:

    $ \begin{array}{rcll} 5x &=& 3\cdot 10 & \\ 5x &=& 30 & \vert :5 \\ x &=& 6 & \end{array} $

    Hinweis: Der Grund, dass das funktioniert ist, dass $5x$ eine Kurzschreibweise für $5\cdot x$ ist. Du wendest demnach durch das Dividieren die Gegenoperation der Multiplikation an.

    Lösung

    Folgende Angaben sind uns bekannt:

    • Das Date mit der schönen Resna ist in $\mathbf{2}$ Stunden.
    • Der angekündigte Schneefall beträgt $\mathbf{30\ \text{cm}}$ pro halbe Stunde.
    • Die fünfte Yeti-Regel lautet: Fallen $\mathbf{120\ \text{cm}}$ Schnee, bleibe im Bett und trinke Tee.

    Wir legen fest:

    • $x$ ist die Höhe des Neuschnees, der in zwei Stunden gefallen sein wird (in Zentimeter).

    Um herauszufinden, ob das Date in den Schnee fällt, müssen wir ermitteln, wie viel Neuschnee innerhalb der nächsten zwei Stunden fällt. Dafür stellen wir zunächst eine Verhältnisgleichung für das Verhältnis von Schneefall in $\text{cm}$ und Zeit in $\text{h}$ auf. Wir erhalten:

    $\frac{30}{0,5}=\frac{x}{2}$

    Um die Unbekannte $x$, also die Höhe des gefallenen Neuschnees in zwei Stunden zu berechnen, multiplizieren wir über Kreuz. Daraus folgt:

    $30\cdot 2=x\cdot 0,5$

    Jetzt stellen wir diese Gleichung nach $x$ um:

    $ \begin{array}{rcll} 30\cdot 2 &=& x\cdot 0,5 & \\ 60 &=& x\cdot 0,5 & \vert :0,5 \\ 120 &=& x & \end{array} $

    In zwei Stunden wird also $120\ \text{cm}$ Neuschnee gefallen sein. Demnach würde Meinhold die 5. Yeti-Regel brechen, wenn er in zwei Stunden zu Resna stapfen würde.

  • Bestimme, in wie vielen Stunden $100\ \text{cm}$ Schnee gefallen sein wird.

    Tipps

    Eine Verhältnisgleichung kannst du mittels einer Multiplikation über Kreuz lösen.

    Schaue dir folgendes Beispiel an:

    $ \begin{array}{rcl} \frac 12 &=&\frac x3 \\ 1\cdot 3 &=& x\cdot 2 \end{array} $

    Wenn deine Ausgangsgleichung eine Verhältnisgleichung der Form $\frac ab=\frac xd$ ist, wobei $a$, $b$ und $d$ Zahlen und $x$ eine Variable ist, dann kannst du wie folgt vorgehen:

    1. Über Kreuz multiplizieren, um die Brüche aufzulösen.
    2. Resultierende Gleichung nach der Unbekannten $x$ auflösen.

    Hier siehst du ein Beispiel für den zweiten Schritt:

    $\begin{array}{rcll} 6x & = & 18 & | :6\\ x & = &3 \end{array}$

    Lösung

    Folgende Angaben sind uns bekannt:

    • Der angekündigte Schneefall beträgt $\mathbf{30\ \text{cm}}$ pro halbe Stunde.
    • Die Höhe des gefallenen Neuschnees innerhalb der Zeit von $x$ Stunden beträgt $\mathbf{100\ \text{cm}}$.

    Wir legen fest:

    • $x$ ist die Zeit, die vergangen sein wird, wenn $100\ \text{cm}$ Neuschnee gefallen ist (in Stunden).

    Zunächst wird die Verhältnisgleichung aus dem Verhältnis von Schneefall in Zentimeter und Zeit in Stunden aufgestellt. Diese lautet:

    $\frac{30}{0,5}=\frac{100}{x}$

    Die darin enthaltene Variable $x$ steht für die gesuchte Zeit, die vergangen sein wird, wenn $100\ \text{cm}$ Schnee gefallen ist. Diese wird nun mittels Multiplikation über Kreuz berechnet:

    $30\cdot x=100\cdot 0,5$

    Diese Gleichung stellen wir jetzt nach der Variablen $x$ um und erhalten:

    $ \begin{array}{rcll} 30\cdot x &=& 100\cdot 0,5 & \\ 30x &=& 50 & \vert :30 \\ x &=& \frac{50}{30} & \\ x &=& \frac 53 & \\ x &=& 1\frac 23 \end{array} $

    Meinhold muss demnach in $1\frac 23$ Stunden, also in einer Stunde und $40$ Minuten, zu Resna stapfen.

  • Bestimme jeweils die Gleichung, welche aus der Multiplikation über Kreuz resultiert.

    Tipps

    Bei der Multiplikation über Kreuz gehst du wie folgt vor:

    • Multipliziere den Zähler auf der linken Seite der Verhältnisgleichung mit dem Nenner auf der rechten Seite der Verhältnisgleichung $\left(\frac ab\searrow\frac cd\right)$ und schreibe das Produkt auf die linke Seite der resultierenden Gleichung.
    • Multipliziere den Zähler auf der rechten Seite der Verhältnisgleichung mit dem Nenner auf der linken Seite der Verhältnisgleichung $\left(\frac ab\swarrow\frac cd\right)$ und schreibe das Produkt auf die rechte Seite der resultierenden Gleichung.

    Schaue dir dieses Beispiel an:

    $\frac 1x=\frac 2x$

    Die Multiplikation über Kreuz liefert die Gleichung $1x=2x$.

    Lösung

    Die Multiplikation über Kreuz ist ein mathematischer Vorgang, um eine Verhältnisgleichung so umzuformen, dass anschließend keine Brüche oder Bruchterme vorliegen.

    Dabei gehst du wie folgt vor:

    • Multipliziere den Zähler auf der linken Seite der Verhältnisgleichung mit dem Nenner auf der rechten Seite der Verhältnisgleichung $\left(\frac ab\searrow\frac cd\right)$ und schreibe das Produkt auf die linke Seite der resultierenden Gleichung.
    • Multipliziere den Zähler auf der rechten Seite der Verhältnisgleichung mit dem Nenner auf der linken Seite der Verhältnisgleichung $\left(\frac ab\swarrow\frac cd\right)$ und schreibe das Produkt auf die rechte Seite der resultierenden Gleichung.
    Somit liefert die Multiplikation über Kreuz für eine allgemeine Verhältnisgleichung der Form $\frac ab=\frac cd$ die Gleichung $a\cdot d=c\cdot b$.

    Wir erhalten für unsere Beispiele diese Lösungen:

    • $\frac x2=\frac 35 \Leftrightarrow 5x=6$
    • $\frac 2x=\frac 35 \Leftrightarrow 10=3x$
    • $\frac 3x=\frac 27 \Leftrightarrow 21=2x$
    • $\frac x3=\frac 27 \Leftrightarrow 7x=6$
  • Ermittle die gesuchte Verhältnisgleichung und löse diese mittels Multiplikation über Kreuz.

    Tipps

    Bilde folgende Verhältnisse:

    • $\frac{\text{Lohn}}{\text{Arbeitsstunden}}$
    • $\frac{\text{Anzahl Perlenketten}}{\text{Dauer der Herstellung}}$

    Stelle die Verhältnisgleichungen zunächst mittels Multiplikation über Kreuz um. Löse sie anschließend nach der Unbekannten $x$ auf.

    Schaue dir folgendes Beispiel an:

    $ \begin{array}{rcll} \frac 45 &=& \frac x{10} & \vert \ \text{ Multiplikation }\ddot{\text{u}}\text{ber Kreuz} \\ 40 &=& 5x & \vert :5 \\ 8 &=& x & \end{array} $

    Lösung

    Hier siehst du die Rechnungen für die beiden Textaufgaben. Um die jeweilige Lösung zu bestimmen, stellen wir Verhältnisgleichungen auf und nutzen die Multiplikation über Kreuz.

    Beispiel 1: Jana bekommt für ihren neuen Job als studentische Hilfskraft $24$ Euro für $2$ Arbeitsstunden.

    Wie viel Geld bekommt Jana für $60$ Arbeitsstunden?

    Wir bilden das Verhältnis von dem Lohn und den dazugehörigen Arbeitsstunden. Somit erhalten wir folgende Verhältnisgleichung:

    $\frac{24}{2}=\frac{x}{60}$

    Diese stellen wir zunächst mittels Multiplikation über Kreuz um. Anschließend lösen wir die Gleichung nach der Variablen $x$ auf:

    $ \begin{array}{rcll} \frac{24}{2} &=& \frac{x}{60} & \\ 1440 &=& 2x & \vert :2 \\ 720 &=& x & \end{array} $

    Beispiel 2: Frau Schön stellt Perlenketten her. Sie braucht für die Fertigung einer Perlenkette $1,5$ Stunden.

    Wie viele Stunden braucht Frau Schön für die Herstellung von $30$ Perlenketten?

    Wir bilden das Verhältnis von der Anzahl hergestellter Perlenketten und der dazugehörigen Herstellungsdauer. Somit erhalten wir folgende Verhältnisgleichung:

    $\frac{1}{1,5}=\frac{30}{x}$

    Diese stellen wir mittels Multiplikation über Kreuz um und erhalten die Lösung für die Variable $x$:

    $ \begin{array}{rcll} \frac{1}{1,5} &=& \frac{30}{x} & \\ x &=& 45 & \end{array} $

  • Gib das Vorgehen bei einer Multiplikation über Kreuz an.

    Tipps

    Schaue dir dieses Beispiel an:

    $\frac 56=\frac 1x \Leftrightarrow 5x=6$

    Du kannst eine Verhältnisgleichung auch wie folgt schrittweise umstellen:

    $ \begin{array}{rcll} \frac 56 &=& \frac 1x & \vert\cdot 6 \\ 5 &=& \frac {1~\cdot~6}{x} & \vert\cdot x \\ 5\cdot x &=& 1\cdot 6 & \end{array} $

    Das ist auch die Erklärung dafür, warum die Möglichkeit der Über-Kreuz-Multiplikation funktioniert.

    Lösung

    Bei der Multiplikation über Kreuz gehst du wie folgt vor:

    • Multipliziere den Zähler auf der linken Seite der Verhältnisgleichung mit dem Nenner auf der rechten Seite der Verhältnisgleichung $\left(\frac ab\searrow\frac cd\right)$ und schreibe das Produkt auf die linke Seite der resultierenden Gleichung.
    • Multipliziere den Zähler auf der rechten Seite der Verhältnisgleichung mit dem Nenner auf der linken Seite der Verhältnisgleichung $\left(\frac ab\swarrow\frac cd\right)$ und schreibe das Produkt auf die rechte Seite der resultierenden Gleichung.

    Somit liefert die Multiplikation über Kreuz für eine allgemeine Verhältnisgleichung der Form $\frac ab=\frac cd$ die Gleichung $a\cdot d=c\cdot b$.

    Hier sieht du einige Beispiele:

    • $\frac 16=\frac 2x \Leftrightarrow x=12$
    • $\frac 27=\frac x3 \Leftrightarrow 6=7x$
    • $\frac 19=\frac 1x \Leftrightarrow x=9$
  • Bestimme die gesuchte Zahl.

    Tipps

    Einen Term der Form $c(a-b)$ kannst du durch Anwendung des Distributivgesetzes wie folgt auflösen:

    $c(a-b)=ca-cb$

    Das Verhältnis von $a$ und $b$ wird mathematisch so dargestellt:

    $\frac{a}{b}$

    Lösung

    Wir suchen eine Zahl, für die folgender Zusammenhang gilt:

    Die Differenz von der gesuchten Zahl $x$ und $2$ wird mit $4$ ins Verhältnis gesetzt. Dieses Verhältnis entspricht dem Verhältnis von $15$ und $2$.

    Nun gehen wir die Beschreibung Schritt für Schritt durch und stellen die entsprechende Gleichung auf:

    • Die Differenz von der gesuchten Zahl $x$ und $2$ ergibt ${x-2}$.
    • Diese Differenz wird mit $4$ ins Verhältnis gesetzt. Das ergibt ${\frac{(x-2)}{4}}$.
    • Dieses Verhältnis entspricht dem Verhältnis von $15$ und $2$. Das führt zu der Gleichung ${\frac{(x-2)}{4}=\frac{15}{2}}$.

    Jetzt haben wir die gesuchte Verhältnisgleichung aufgestellt und lösen sie nach $x$ auf. Dafür wenden wir die Multiplikation über Kreuz sowie das Distributivgesetz ($c(a\pm b)=ca\pm cb$) an. Wir erhalten folgende Rechnung:

    $ \begin{array}{rcll} \frac{(x-2)}{4} &=& \frac{15}{2} & \\ 2(x-2) &=& 15\cdot 4 & \\ 2x-4 &=& 60 & \vert +4 \\ 2x &=& 64 & \vert :2 \\ x &=& 32 & \end{array} $