Über 1,6 Millionen Schüler*innen nutzen sofatutor!
  • 93%

    haben mit sofatutor ihre Noten in mindestens einem Fach verbessert

  • 94%

    verstehen den Schulstoff mit sofatutor besser

  • 92%

    können sich mit sofatutor besser auf Schularbeiten vorbereiten

Verhältnisse erweitern

Alle Inhalte sind von Lehrkräften & Lernexperten erstellt
Du möchtest schneller & einfacher lernen?

Dann nutze doch Erklärvideos & übe mit Lernspielen für die Schule.

Kostenlos testen
Du willst ganz einfach ein neues Thema lernen
in nur 12 Minuten?
Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
  • Das Mädchen lernt 5 Minuten mit dem Computer 5 Minuten verstehen

    Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.

    92%
    der Schüler*innen hilft sofatutor beim selbstständigen Lernen.
  • Das Mädchen übt 5 Minuten auf dem Tablet 5 Minuten üben

    Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.

    93%
    der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert.
  • Das Mädchen stellt fragen und nutzt dafür ein Tablet 2 Minuten Fragen stellen

    Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.

    94%
    der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.
Bewertung

Ø 3.9 / 109 Bewertungen
Die Autor*innen
Avatar
Team Digital
Verhältnisse erweitern
lernst du in der 5. Klasse - 6. Klasse - 7. Klasse - 8. Klasse

Grundlagen zum Thema Verhältnisse erweitern

Nach dem Schauen dieses Videos wirst du in der Lage sein, Verhältnisse zu erweitern.

Zunächst lernst du, was Verhältnisse sind. Anschließend siehst du verschiedene Schreibweisen für Verhältnisse. Abschließend lernst du, wie du Verhältnisse erweiterst.

Lerne etwas über das Erweitern von Verhältnissen.

Das Video beinhaltet Schlüsselbegriffe, Bezeichnungen und Fachbegriffe wie Verhältnis, Verhältnisse, Bruch und Erweitern von Verhältnissen.

Bevor du dieses Video schaust, solltest du bereits wissen, was Verhältnisse sind.

Nach diesem Video wirst du darauf vorbereitet sein, das Vergleichen verschiedener Verhältnisse zu lernen.

Transkript Verhältnisse erweitern

Während er im Hauslabor seines Vaters mit abgefahrenem Wissenschaftskram herumhantiert hat, hat Junior vielleicht möglicherweise irgendwie seine kleine Schwester geschrumpft. Was, wenn seiner Mutter das mitbekommt? Erstaunlicherweise entdeckt Junior da im Regal einen Wachstumsstrahler. Bevor er damit aber auf seine Schwester schießt, will er ganz sicher gehen und Verhältnisse erweitern. Du weißt ja schon, dass ein Verhältnis die Beziehung zwischen zwei Größen angibt, die wir a und b nennen wollen. Und du weißt, dass es drei Arten gibt, ein Verhältnis zu notieren: als Bruch, mit einem Geteilt-Zeichen oder als Zahlen, zwischen denen das Wörtchen "zu" steht. Wir können Verhältnisse übersichtlich in einer Tabelle darstellen. Nehmen wir diese Schüssel hier als Beispiel. Sie besitzt einen Durchmesser von 15 cm und eine Höhe von 7 cm. Man sagt: das Verhältnis von Durchmesser zu Höhe beträgt 15 zu 7. Wenn der Wachstumsstrahl einfach nur Verhältnisse umrechnet, muss dieses Verhältnis gleichbleiben, ganz egal wie sehr wir die Schüssel vergrößern. Übertragen wir die Maße der Schüssel in eine Tabelle, um zu schauen, welche anderen Verhältnisse 15 zu 7 entsprechen. Ganz ähnlich zum Erweitern von Brüchen kann man gleiche Verhältnisse erzeugen, indem man beide Zahlen mit ein und demselben Faktor multipliziert. Wenn wir die Durchmesser und die Höhe zum Beispiel verdoppeln, erhalten wir ein Verhältnis von 30 zu 14. Wir wissen, dass die Verhältnisse gleich sind, weil 15 Siebtel und 30 Vierzehntel gleiche Brüche sind. Füllen wir die Tabelle doch mit weiteren Verhältnissen auf. Multiplizieren wir 15 und 7 mit 3, erhalten wir ein Verhältnis von 45 zu 21. Wenn wir mit 4 multiplizieren, ergibt das 60 zu 28 und so weiter. Ganz egal, wie groß wir die Schüssel machen, das Verhältnis von Durchmesser zu Höhe lässt sich immer auf 15 zu 7 zurückführen. Wir können Verhältnisse auch umrechnen, um fehlende Werte zu berechnen. Dieser Föhn hier hat einen 20 cm langen Kopf und einen 10 cm langen Griff. Wie lang wird der Griff, wenn wir den Kopf mit dem Wachstumsstrahler auf 80 cm vergrößern? Wie zuvor können wir die Tabelle auffüllen, indem wir das Verhältnis umrechnen. Wir multiplizieren 20 und 10 mit 2, um ein Verhältnis von 40 zu 20 zu erhalten. Wenn wir 20 und 10 mit 3 multiplizieren, erhalten wir 60 zu 30. Und wenn wir unser ursprüngliches Verhältnis von 20 zu 10 mit 4 multiplizieren, erhalten wir 80 zu 40. Wenn wir den Kopf des Föhns auf 80 cm vergrößern, wird der Griff also 40 cm lang. Der Föhn ist jetzt viel gigantischer als zuvor, das Verhältnis von Kopf zu Griff ist aber gleichgeblieben. Fassen wir zusammen: Mit Verhältnissen vergleicht man verschiedene Größen. In einer Tabelle kann man Zahlenpaare auflisten, die gleiche Verhältnisse besitzen. Zwei Verhältnisse sind gleich, wenn ihre entsprechenden Brüche gleich sind. Junior weiß jetzt, dass der Wachstumsstrahler funktioniert. Zeit, ihn an seiner Schwester auszuprobieren. Oh nein! Vorsicht!

17 Kommentare
17 Kommentare
  1. sehr....gut

    Von Kuzey, vor etwa 2 Monaten
  2. 😍😍🙃🙃

    Von No Name, vor etwa einem Jahr
  3. Es ist eine super tolle und wizige Story und sie ist wirklich sehr gelungen

    Von No Name, vor etwa einem Jahr
  4. Danke 🤩 sehr coole story 👍und witzig🤣
    sehr guter sprecher und gut erklährt

    Von Naila , vor etwa einem Jahr
  5. Die Story ist gut

    Von Anni, vor etwa einem Jahr
Mehr Kommentare

Verhältnisse erweitern Übung

Du möchtest dein gelerntes Wissen anwenden? Mit den Aufgaben zum Video Verhältnisse erweitern kannst du es wiederholen und üben.
  • Bestimme weitere Verhältnisse, die dem Verhältnis „Durchmesser zu Höhe“ entsprechen.

    Tipps

    Du kannst Verhältnisse in drei verschiedenen Arten angeben. Diese lauten wie folgt:

    • $15$ zu $7$
    • $15:7$
    • $\dfrac {15}7$

    Hier siehst du ein Beispiel zum Verhältnis Kopf zu Griff eines Föhns. Genauso kannst du eine Tabelle für das Verhältnis Durchmesser zu Höhe der Schüssel erstellen und weitere Verhältnisse bestimmen.

    Lösung

    Um zu untersuchen, wie sich die Höhe der Schüssel verändert, wenn der Durchmesser variiert und dabei das Verhältnis von Durchmesser zu Höhe mit $15:7$ beibehalten wird, erstellen wir die hier abgebildete Tabelle:

    1. Wir tragen in die Spalte für den Durchmesser $15$ und in die Spalte für die Höhe $7$ ein.
    2. Nun berechnen wir die Höhe für einen Durchmesser von $30$. Da $2\cdot 15=30$ gilt, multiplizieren wir auch die Höhe mit $2$ und erhalten $2\cdot 7=14$.
    3. Jetzt berechnen wir die dritte Zeile. Den Durchmesser $45$ erhalten wir, indem wir $3\cdot 15=45$ rechnen. Mit der Höhe machen wir das Gleiche, um das Verhältnis $15$ zu $7$ beizubehalten. Wir rechnen also $3\cdot 7=21$.
    4. In der letzten Zeile betrachten wir noch den Durchmesser $4\cdot 15=60$. Wir erhalten also eine Höhe von $4\cdot 7=28$.
    Damit haben wir folgende Verhältnisse gefunden:

    • $30:14$
    • $45:21$
    • $60:28$
    Demnach können die übrigen Verhältnisse nicht korrekt sein.

  • Vervollständige die Tabelle für das Verhältnis „Kopf zu Griff“ des Föhns.

    Tipps

    Du startest mit dem Verhältnis $20:10$. Dieses verrät dir den fehlenden Eintrag in der ersten Zeile.

    Du musst auf beiden Seiten der Tabelle dieselbe Operation durchführen, um zu dem Wert der nächsten Zeile zu gelangen.

    Lösung

    Um zu untersuchen, wie sich der Griff und der Kopf bei gleichem Verhältnis „Kopf zu Griff“ mit $20:10$ verändern, erstellen wir die hier abgebildete Tabelle:

    1. Wir tragen in die erste Zeile unter „Kopf“ $20$ und unter „Griff“ $10$ ein. Das ist nämlich das bekannte Verhältnis.
    2. In der zweiten Zeile steht in Spalte „Griff“ eine $20$. Von der ersten Zeile zur zweiten müssen wir also mal $2$ rechnen. Für Spalte „Kopf“ erhalten wir dann $20\cdot 2=40$.
    3. Genauso erhalten wir die übrigen Verhältnisse. Da $20\cdot 3=60$ gilt, rechnen wir $10\cdot 3=30$ für den „Griff“.
    4. Mit $20\cdot 4=80$ folgt für die letzte Zeile in Spalte „Griff“ $10\cdot 4=40$.
  • Ermittle mithilfe der gegebenen Verhältnisse die gesuchten Anzahlen.

    Tipps

    Du musst den Bruch für das Verhältnis einer Farbe so erweitern, dass im Nenner die jeweilige Gesamtzahl steht.

    Wenn du nicht mit Brüchen arbeiten möchtest, kannst du auch gern eine Tabelle nutzen: Trage in eine Spalte die Anzahl für die Bälle einer bestimmten Farbe ein. In die andere Spalte kommt die jeweilige Gesamtzahl.

    Hier siehst du die erste Zeile der Tabelle für die Bestimmung der Anzahl roter Bälle:

    $\begin{array}{c|c} \text{Anzahl rot} & \text{Gesamtzahl} \\ \hline 1 & 5 \\ \\ \end{array}$

    In einem Bällebad mit $150$ Bällen liegen $30$ rote Bälle. Hierzu multiplizierst du sowohl die linke als auch die rechte Seite der Tabelle jeweils mit $30$:

    $\begin{array}{c|c} \text{Anzahl rot} & \text{Gesamtzahl} \\ \hline 1 & 5 \\ 30 & 150 \end{array}$

    Lösung

    Im Folgenden ermitteln wir die Anzahlen der Bälle einer Farbe, indem wir die Verhältnisse zunächst als Brüche schreiben und diese dann entsprechend erweitern. Dabei muss der Nenner der Gesamtzahl $50$ entsprechen. Wir kennen folgende Verhältnisse, die wir nun als Bruch schreiben:

    • rote Bälle: $~1$ zu $5 \quad\rightarrow\quad \dfrac 15$
    • blaue Bälle: $~3$ zu $10 \quad\rightarrow\quad \dfrac 3{10}$
    • grüne Bälle: $~1$ zu $10 \quad\rightarrow\quad \dfrac 1{10}$
    • gelbe Bälle: $~2$ zu $5 \quad\rightarrow\quad \dfrac 25$
    Jetzt sehen wir uns die jeweiligen Beispiele an:

    Anzahl roter Bälle

    Wir erweitern das Verhältnis roter Bälle so, dass im Nenner des Bruchs $50$ steht:

    • $\dfrac 15=\dfrac{1\cdot 10}{5\cdot 10}=\dfrac{10}{50}$
    In einem Bällebad mit $50$ Bällen würden also $10$ rote Bälle liegen.

    Anzahl blauer Bälle

    Wir erweitern den Bruch für das Verhältnis blauer Bälle auf den Nenner $50$:

    • $\dfrac 3{10}=\dfrac{3\cdot 5}{10\cdot 5}=\dfrac{15}{50}$
    In einem Bällebad mit $50$ Bällen würden also $15$ blaue Bälle liegen.

    Anzahl grüner Bälle

    Hierzu erweitern wir den Bruch für das Verhältnis grüner Bälle so, dass im Nenner $50$ steht:

    • $\dfrac1{10}=\dfrac{1\cdot 5}{10\cdot 5}=\dfrac5{50}$
    In ein Bällebad mit $50$ Bällen gehören also nur $5$ grüne Bälle.

    Anzahl gelber Bälle

    Wir erweitern das Verhältnis gelber Bälle so, dass im Nenner des Bruchs $50$ steht:

    • $\dfrac 2{5}=\dfrac{2\cdot 10}{5\cdot 10}=\dfrac{20}{50}$
    In einem Bällebad mit $50$ Bällen würden also $20$ gelbe Bälle liegen.

    Alternatives Vorgehen

    Du kannst die jeweiligen Anzahlen natürlich auch in einer Tabelle berechnen. Trage hierzu in eine Spalte die Anzahl für die Bälle einer bestimmten Farbe ein. In die andere Spalte kommt die jeweilige Gesamtzahl. In die erste Zeile schreibst du das gegebene Verhältnis und multiplizierst dann die Werte einer Zeile jeweils mit derselben Zahl, um auf ein neues Wertepaar zu kommen. Für die Anzahl roter Bälle in einem Bällebad mit $50$ Bällen erhältst du folgende Tabelle:

    $\begin{array}{c|c} \text{Anzahl rot} & \text{Gesamtzahl} \\ \hline 1 & 5 \\ 10 & 50 \end{array}$

    Du multipliziert $5$ mit $10$, um auf die Gesamtzahl $50$ zu kommen. Also musst du auch $1$ mit $10$ multiplizieren und erhältst so die Anzahl roter Bälle, nämlich $10$.

  • Ermittle die Zusammensetzung der Perlenketten unter Berücksichtigung der gegebenen Verhältnisse.

    Tipps

    Mit den Verhältnissen und den neuen Gesamtzahlen kannst du die Anzahl der Perlen für die drei Ketten bestimmen. Hierzu kannst du die Verhältnisse zunächst in Brüche überführen, die du dann entsprechend erweiterst. Im Zähler der jeweiligen Erweiterung steht dann die gesuchte Anzahl der Perlen.

    Das Verhältnis der roten Perlen ist $\dfrac{3}{10}$. Das heißt, dass bei insgesamt $10$ Perlen $3$ rot sind. Um nun die Anzahl roter Perlen einer Kette mit insgesamt $300$ Perlen zu berechnen, musst du nur das gegebene Verhältnis so erweitern, dass im Nenner deines Bruches $300$ steht. Der Zähler gibt dir dann die Anzahl der roten Perlen an:

    $\dfrac {3\cdot 30}{10\cdot 30}= \dfrac{\color{#669900}{90}}{300} $

    Eine Kette mit $300$ Perlen besitzt also $90$ rote Perlen.

    Lösung

    Wir betrachten zunächst die für die Rechnung nötigen Verhältnisse und schreiben sie als Bruch:

    • Verhältnis roter Perlen zu Gesamtzahl: $3:10$ als Bruch $\dfrac{3}{10}$
    • Verhältnis gelber Perlen zu Gesamtzahl: $~ 40$ zu $200$ und auch damit $1:5$ bzw. als Bruch $\dfrac{1}{5}$
    • Verhältnis blauer Perlen zu Gesamtzahl: $~ 100$ zu $200$ und auch damit $1:2$ bzw. als Bruch $\dfrac{1}{2}$
    Mit diesen Verhältnissen und den neuen Gesamtzahlen können wir nun die Anzahl der Perlen für die drei Ketten bestimmen. Wir erweitern hierfür die Brüche der Verhältnisse. Im Zähler der jeweiligen Erweiterung steht dann die gesuchte Anzahl der Perlen:

    $\begin{array}{ccc|ccc|ccc|ccc} \\ & \text{Gesamtzahl} &&& \text{rote Perlen} &&& \text{gelbe Perlen} &&& \text{blaue Perlen} &\\ \\ \hline \\ & 150 &&& \dfrac {3\cdot 15}{10\cdot 15}= \dfrac{\color{#669900}{45}}{150} &&& \dfrac {1\cdot 30}{5\cdot 30}= \dfrac{\color{#669900}{30}}{150} &&& \dfrac {1\cdot 75}{2\cdot 75}= \dfrac{\color{#669900}{75}}{150} & \\ \\ \hline \\ & 250 &&& \dfrac {3\cdot 25}{10\cdot 25}= \dfrac{\color{#669900}{75}}{250} &&& \dfrac {1\cdot 50}{5\cdot 50}= \dfrac{\color{#669900}{50}}{250} &&& \dfrac {1\cdot 125}{2\cdot 125}= \dfrac{\color{#669900}{125}}{250} & \\ \\ \hline \\ & 500 &&& \dfrac {3\cdot 50}{10\cdot 50}= \dfrac{\color{#669900}{150}}{500} &&& \dfrac {1\cdot 100}{5\cdot 100}= \dfrac{\color{#669900}{100}}{500} &&& \dfrac {1\cdot 250}{2\cdot 250}= \dfrac{\color{#669900}{250}}{500} & \\ \\ \end{array}$

  • Gib die Eigenschaften von Verhältnissen an.

    Tipps

    Ein Bruch ist eine andere Schreibweise für eine Division.

    Stellen zwei Brüche dasselbe Verhältnis dar, so ist der vollständig gekürzte Bruch beider Brüche gleich. Sieh dir hierzu folgendes Beispiel an:

    • $\dfrac{6}{18}=\dfrac 13$
    • $\dfrac{9}{27}=\dfrac 13$
    Damit ist $6$ zu $18$ das Gleiche wie $9$ zu $27$.

    Lösung

    Verhältnisse begegnen dir oft im Alltag. Zum Beispiel mischst du Farben in angegebenen Verhältnissen, um einen bestimmten Farbton zu erhalten. Oder du bereitest Pudding zu, bei dem das Verhältnis von Pulver und Flüssigkeit sehr wichtig ist, damit dein Pudding weder zu dünn- noch zu dickflüssig wird. Möchtest du einmal die doppelte Menge zubereiten, musst du die Zutaten alle verdoppeln, damit sich das Verhältnis nicht verändert.

    Außerdem beschreibt ein Verhältnis auch den Vergleich zweier Größen. Man kann beispielsweise sagen, dass ein vierjähriges Kind vermutlich halb so groß ist wie du. Das Verhältnis von deiner Größe zu dem des Kindes wäre dann $2$ zu $1$. Das kannst du auch wie folgt schreiben:

    • als Bruch: $~\dfrac 21$
    • mit Geteilt-Zeichen: $~2:1$
    Zwei Verhältnisse sind gleich, wenn ihre entsprechenden Brüche gleich sind.

    Beispiel:

    • $\dfrac {15}7=\dfrac{45}{21}$
    Stellen zwei Brüche dasselbe Verhältnis dar, ist der vollständig gekürzte Bruch beider Brüche gleich. Hier erhalten wir:

    • $\dfrac{45}{21}=\dfrac{\not 3\cdot 15}{\not 3\cdot 7}$
    Damit ist $45$ zu $21$ das Gleiche wie $15$ zu $7$.

  • Bestimme mithilfe der gegebenen Verhältnisse die Menge der Zutaten.

    Tipps

    Du kannst bei dieser Aufgabe unterschiedlich vorgehen:

    1. Du bestimmst mithilfe der Verhältnisse zunächst die Mengen für den einfachen Kuchen.
    2. Du bestimmst die Mengen der Zutaten gleich ausgehend von der doppelten Menge Mehl und der halben Menge Mehl.

    Das Verhältnis von Mehl zu Zucker beträgt $2$ zu $1$. Das bedeutet in Worten, dass der Teig doppelt so viel Mehl enthält wie Zucker.

    Lösung

    Wir können bei dieser Aufgabe unterschiedlich vorgehen:

    1. Wir bestimmen mithilfe der Verhältnisse zunächst die Mengen für den einfachen Kuchen.
    2. Wir bestimmen die Mengen der Zutaten gleich ausgehend von der doppelten Menge Mehl und der halben Menge Mehl.
    Wir gehen hier wie unter Punkt 1 beschrieben vor. Also nutzen wir die Verhältnisse, um zunächst die Menge der Zutaten für den einfachen Kuchen zu ermitteln. Anschließend verdoppeln bzw. halbieren wir diese Mengen:

    Zutaten für die einfache Teigmenge

    Mehl: $~300\ \text{g}$

    Zucker: Verhältnis von Mehl zu Zucker (beide in Gramm): $~2:1$

    • Das bedeutet, dass wir doppelt so viel Mehl brauchen wie Zucker. Rechnerisch gehen wir wie folgt vor: $~ \dfrac 21 = \dfrac{2\cdot 150}{1\cdot 150}=\dfrac{300}{150}$. Also kommt in den Teig $150\ \text{g}$ Zucker.
    Eier: Verhältnis der Anzahl der Eier zu Zucker in Gramm: $~1:50$

    • Das heißt, dass wir pro Ei $50\ \text{g}$ Zucker verwenden. Da der Teig $150\ \text{g}$ Zucker enthält, erweitern wir den Bruch wie folgt: $~ \dfrac 1{50} = \dfrac{1\cdot 3}{50\cdot 3}=\dfrac{3}{150}$. Damit benötigt man für die einfache Teigmenge $3$ Eier.
    Sahne: Verhältnis der Sahne in Milliliter zu Mehl in Gramm: $~2:3$

    • Das heißt, dass der Teig pro $2\ \text{ml}$ Sahne $3\ \text{g}$ Mehl enthält. Da dem einfachen Teig $300\ \text{g}$ Mehl zugefügt wird, erweitern wir den Bruch wie folgt: $~ \dfrac 2{3} = \dfrac{2\cdot 100}{3\cdot 100}=\dfrac{200}{300}$. Damit benötigt man für die einfache Teigmenge $200\ \text{ml}$ Sahne.
    Zutaten für die doppelte Teigmenge

    • Mehl: $~2\cdot 300\ \text{g}=600\ \text{g}$
    • Zucker: $~2\cdot 150\ \text{g}=300\ \text{g}$
    • Eier: $~2\cdot 3=6$
    • Sahne: $~2\cdot 200\ \text{ml}=400\ \text{ml}$
    Zutaten für die halbe Teigmenge

    • Mehl: $~300\ \text{g} : 2 = 150\ \text{g}$
    • Zucker: $~150\ \text{g} : 2 = 75\ \text{g}$
    • Eier: $~3:2=1,5$
    • Sahne: $~200\ \text{ml} : 2=100\ \text{ml}$

    Alternative Vorgehensweise

    Du kannst die Menge für Mehl natürlich auch gleich verdoppeln und dann die jeweiligen Verhältnisse wie oben auf die doppelte Mehlmenge anwenden. So erhältst du direkt die verdoppelten Mengen der anderen Zutaten. Im Folgenden siehst du noch als Beispielrechnung die direkte Berechnung der doppelten Zuckermenge. Das Verhältnis von Mehl zu Zucker (beide in Gramm) beträgt weiterhin $~2:1$.

    • Mit $600\ \text{g}$ Mehl folgt: $~ \dfrac 21 = \dfrac{2\cdot 300}{1\cdot 300}=\dfrac{600}{300}$. Wir erhalten also die Zuckermenge $300\ \text{g}$.
30 Tage kostenlos testen
Mit Spaß Noten verbessern
und vollen Zugriff erhalten auf

7.718

sofaheld-Level

6.601

vorgefertigte
Vokabeln

7.923

Lernvideos

37.087

Übungen

34.324

Arbeitsblätter

24h

Hilfe von Lehrer*
innen

laufender Yeti

Inhalte für alle Fächer und Klassenstufen.
Von Expert*innen erstellt und angepasst an die Lehrpläne der Bundesländer.

30 Tage kostenlos testen

Testphase jederzeit online beenden