Über 1,6 Millionen Schüler*innen nutzen sofatutor!
  • 93%

    haben mit sofatutor ihre Noten in mindestens einem Fach verbessert

  • 94%

    verstehen den Schulstoff mit sofatutor besser

  • 92%

    können sich mit sofatutor besser auf Schularbeiten vorbereiten

Verhältnisse

Was ist ein Verhältnis in der Mathematik und wie kann es verwendet werden, um Mengen anzupassen? Entdecke verschiedene Darstellungen von Verhältnissen, wie Tabellen oder Diagramme. Lerne, wie du mithilfe von Verhältnissen Größen berechnen kannst. Interessiert? All dies und vieles mehr erwartet dich im folgenden Text!

Du willst ganz einfach ein neues Thema lernen
in nur 12 Minuten?
Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
  • Das Mädchen lernt 5 Minuten mit dem Computer 5 Minuten verstehen

    Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.

    92%
    der Schüler*innen hilft sofatutor beim selbstständigen Lernen.
  • Das Mädchen übt 5 Minuten auf dem Tablet 5 Minuten üben

    Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.

    93%
    der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert.
  • Das Mädchen stellt fragen und nutzt dafür ein Tablet 2 Minuten Fragen stellen

    Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.

    94%
    der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.
Bewertung

Ø 4.0 / 246 Bewertungen
Die Autor*innen
Avatar
Team Digital
Verhältnisse
lernst du in der 5. Klasse - 6. Klasse - 7. Klasse - 8. Klasse

Verhältnisse Übung

Du möchtest dein gelerntes Wissen anwenden? Mit den Aufgaben zum Video Verhältnisse kannst du es wiederholen und üben.
  • Gib die korrekten Aussagen zu Verhältnissen an.

    Tipps

    Bist du dir nicht sicher, ob zwei Brüche gleich sind, kannst du sie auf den gleichen Nenner bringen: Bei $\frac{1}{2}$ und $\frac{2}{1}$ ergibt sich:

    $\frac{2}{1} = \frac{4}{2} \neq \frac{1}{2} $

    Lösung

    Diese Aussagen sind falsch:

    • Verhältnisse gibt man immer ausschließlich mithilfe von Brüchen an.
    Verhältnisse kannst du auf verschiedene Arten darstellen. Brüche gehören dazu, allerdings kannst du auch das Wort "zu" oder einen Doppelpunkt verwenden.

    • Die Reihenfolge bei Verhältnissen ist egal. $\frac{1}{3}$ ist nämlich das Gleiche wie $\frac{3}{1}$.
    Bei Verhältnissen ist die Reihenfolge von großer Bedeutung. Das Vertauschen der Reihenfolge kehrt das Verhältnis um.

    Diese Aussagen sind richtig:

    • Verhältnisse muss man immer in der richtigen Reihenfolge angeben.
    • Verhältnisse kann man durch das Wort "zu", einen Doppelpunkt oder einen Bruch angeben.
    • In einem Kästchendiagramm können Verhältnisse graphisch dargestellt werden.
  • Bestimme die Verhältnisse.

    Tipps

    Um die Anteile in der Tabelle zu berechnen, kannst du von der ersten Zeile ausgehen. Du kommst zu den Einträgen einer anderen Zeile, indem du alle Einträge in der ersten Zeile mit der gleichen Zahl multiplizierst.

    Das Multiplizieren einer Zeile mit der gleichen Zahl entspricht dem Erweitern eines Bruchs.

    Lösung

    Um die Anteile in der Tabelle zu berechnen, kannst du von der ersten Zeile ausgehen. Du kommst zu den Einträgen einer anderen Zeile, indem du alle Einträge in der ersten Zeile mit der gleichen Zahl multiplizierst.

    Dabei bleibt das Verhältnis von $4:3$ immer gleich. Das entspricht dem Erweitern eines Bruchs. In der zweiten Zeile multiplizierst du also alle Einträge mit $2$. Dann erhältst du für die Anteile der Erdbeeren:

    $4 \cdot 2 = 8$

    und für die Bananen:

    $3 \cdot 2 = 6$.

    Das Verhältnis ist immer noch das Gleiche:

    $\frac{8}{6}= \frac{4}{3}$.

    Die anderen Einträge der Tabelle kannst du genauso bestimmen.

  • Erschließe die gleichen Verhältnisse.

    Tipps

    Verhältnisse kannst du durch das Wort „zu“, einen Doppelpunkt oder einen Bruch angeben. $5$ zu $1$, $5:1$ und $\frac{5}{1}$ bedeuten das Gleiche.

    So wie du Brüche erweitern kannst, kannst du die beiden Anteile der Verhältnisse auch mit der jeweils gleichen Zahl multiplizieren. $10$ zu $2$ gibt das gleiche Verhältnis an wie $5$ zu $1$.

    Lösung

    Verhältnisse kannst du durch das Wort „zu“, einen Doppelpunkt oder einen Bruch angeben. $5$ zu $1$, $5:1$ und $\frac{5}{1}$ bedeuten das Gleiche. Allerdings musst du immer die Reihenfolge beachten. So wie du Brüche erweitern kannst, kannst du die beiden Anteile der Verhältnisse auch mit der jeweils gleichen Zahl multiplizieren. $10$ zu $2$ gibt das gleiche Verhältnis an wie $5$ zu $1$. Mit diesen Überlegungen kannst du die gleichen Verhältnisse bestimmen:

    • $3$ zu $1$ ist das gleiche Verhältnis wie $\frac{6}{2}$.
    • $4 : 5$ bedeutet das Gleiche wie $4$ zu $5$.
    • $\frac{12}{9}$ ist das gleiche Verhältnis wie $4$ zu $3$.
    • $2$ zu $5$ und $\frac{10}{25}$ geben das gleiche Verhältnis an.
  • Bestimme die Verhältnisse.

    Tipps

    Das erste Verhältnis von Stunden zu Müll ist mit $1:3$ gegeben.

    Lösung

    Das erste Verhältnis von Stunden zu Müll ist mit $1:3$ gegeben. Um die Anteile in der Tabelle zu berechnen, kannst du von der ersten Zeile ausgehen. Du kommst zu den Einträgen einer anderen Zeile, indem Du alle Einträge in der ersten Zeile mit der gleichen Zahl multiplizierst.

    Dabei bleibt das Verhältnis von $1:3$ immer gleich. In der zweiten Zeile multiplizierst du also alle Einträge mit $2$. Dann erhältst du zum Beispiel für $2$ Stunden:

    $2 \cdot 3= 6$ Kilogramm Müll.

    Das Verhältnis von $1:3$ bleibt hier gleich:

    $\frac{2}{6}= \frac{1}{3}$.

  • Bestimme die korrekten Aussagen zu Kästchendiagrammen.

    Tipps

    Im Diagramm sind drei Teile Karamell und fünf Teile Schokolade zu sehen.

    Das Verhältnis gibst du am besten in der einfachsten Form an, also mit den kleinstmöglichen Zahlen. Ist es in einem Bruch dargestellt, kürze ihn soweit wie möglich.

    Lösung

    Diese Aussagen sind falsch:

    • Lässt man jedes Kästchen für $2$ Teile der Gesamtmenge stehen, dann verändert sich das Verhältnis.
    Solange jedes Kästchen für den gleichen Anteil an der Gesamtmenge steht, verändert sich nur die Gesamtmenge, aber nicht das Verhältnis der Zutaten.

    • Das Diagramm zeigt ein Verhältnis von Karamell zu Schokolade von $\frac{5}{3}$.
    Das Diagramm zeigt 3 Kästchen Karamell und 5 Kästchen Schokolade. Hier wurde das Verhältnis vertauscht.

    Diese Aussagen sind wahr:

    • Das Diagramm zeigt ein Verhältnis von Karamell zu Schokolade von $3:5$.
    • Steht jedes Kästchen für $3$ Teile der Gesamtmenge, dann hat sich die Gesamtmenge an Brownies verdreifacht.
    • Um das Verhältnis anzugeben, steht im Diagramm jedes Kästchen für einen Teil der Gesamtmenge.
    Das Verhältnis gibst du am besten in der einfachsten Form an, also mit den kleinstmöglichen Zahlen. Ist es in einem Bruch dargestellt, kürze ihn soweit wie möglich.

  • Erarbeite, wie man mit Verhältnisgleichungen rechnet.

    Tipps

    Gleiche Verhältnisse kannst du natürlich auch gleichsetzen. Das ist hilfreich, wenn du bereits ein Verhältnis und einen Anteil gegeben hast und den passenden Anteil berechnen willst, der dieses Verhältnis erhält.

    In der Verhältnisgleichung wird jedem Anteil eine Variable zugeordnet. Die zugeordneten Variablen kannst du dann in die Verhältnisgleichung einsetzen.

    Lösung

    Der Lückentext kann so vervollständigt werden:

    • In einer Verhältnisgleichung werden zwei Verhältnisse $a:b$ und $c:d$ gleichgesetzt. Also:
    • $\frac{a}{b}=\frac{c}{d}$
    Gleiche Verhältnisse kannst du natürlich auch gleichsetzen. Das ist hilfreich, wenn du bereits ein Verhältnis und einen Anteil gegeben hast und den passenden Anteil berechnen willst, der dieses Verhältnis erhält.

    • Verhältnisgleichungen werden häufig verwendet, um aus drei bekannten Anteilen einen vierten auszurechnen. In unserem Fall ist das gewünschte Verhältnis von Kies $a=4$ zu Zement $b=1$, sowie eine gegebene Menge Kies $c=40$ bekannt.
    In der Verhältnisgleichung wird jedem Anteil eine Variable zugeordnet.

    • Damit kann sie die Verhältnisgleichung aufstellen:
    • $\frac{4}{1}=\frac{40}{d}$
    Die zugeordneten Variablen kannst du dann in die Verhältnisgleichung einsetzen.

    • (...) Um das Mischungsverhältnis von $4:1$ zu erhalten, benötigt Sarah also $10~\text{kg}$ Zement.
    Die Lösung der Gleichung gibt die benötigte Menge Zement an.

    • (...) Wieder stellt sie eine Verhältnisgleichung auf:
    • $\frac{4}{1}=\frac{c}{8}$
    • Sie benötigt also nur $32~\text{kg}$ ihres Kieses.
    Die Berechnung funktioniert hier analog zur ersten Gleichung.