sofatutor 30 Tage
kostenlos ausprobieren

Videos & Übungen für alle Fächer & Klassenstufen

Verhältnisse

Bewertung

Ø 4.5 / 44 Bewertungen

Die Autor/-innen
Avatar
Team Digital

Verhältnisse

lernst du in der 5. Klasse - 6. Klasse - 7. Klasse - 8. Klasse

Beschreibung Verhältnisse

Nach dem Schauen dieses Videos wirst du in der Lage sein, die mathematische Bedeutung des Begriffes Verhältnis zu verstehen.

Zunächst lernst du, dass du Verhältnisse in verschiedenen Schreibweisen angeben kannst. Anschließend lernst du die graphische Darstellung von Verhältnissen als Tabellen und Kästchen-Diagrammen kennen. Abschließend lernst du, dass die Reihenfolge von Verhältnissen zu beachten ist.

Lerne etwas über Verhältnisse, indem du Leelee auf ihrem Weg zum Internet-Star unterstützt.

Das Video beinhaltet Schlüsselbegriffe, Bezeichnungen und Fachbegriffe wie Verhältnis, Umkehrung, Bruch, kürzen, erweitern, größter gemeinsamer Teiler, Nenner und Zähler.

Bevor du dieses Video schaust, solltest du bereits wissen, was ein Bruch ist und wie du einen Bruch erweiterst und kürzt.

Nach diesem Video wirst du darauf vorbereitet sein, Verhältnisgleichungen zu lernen.

Transkript Verhältnisse

Leelees neueste Idee auf dem Weg zum Internet-Star, ist ein eigener Koch-Vlog-Kanal die Küchenkönigin. Leelee ist nicht gerade eine Meisterköchin, aber wozu muss man kochen können, wenn man das Rezept für perfekte Verhältnisse besitzt? Schauen wir mal, was Leelee als erstes zubereitet: Königsklasse Käsekartoffeln. Laut Rezept braucht man 3 Teile Kartoffeln auf einen Teil Käse. Die Beziehung zwischen der Kartoffelmenge und der Käsemenge nennt man "Verhältnis". Du schreibst es entweder mithilfe des Wörtchens "zu" oder du benutzt einen Doppelpunkt oder einen Bruch. Ganz egal, wie du es aufschreibst, du sagst immer: 3 zu 1. Die Bedeutung der Zahlen und ihre Reihenfolge stehen im Rezept. Erst die Kartoffeln, dann der Käse. Macht Leelee aber einen Fehler und vertauscht das Verhältnis erhält sie 3 Teile Käse auf einen Teil Kartoffeln. Ein Kartoffel-Käse-Verhältnis von 1 zu 3 gäbe ein komplettes Käse-Chaos. Das ist der Grund, weshalb die Reihenfolge bei Verhältnissen wichtig ist. Es ist genau wie bei Brüchen: Drei Eintel ist etwas anderes als ein Drittel. Okay, das war ein tolles Rezept für Leute, die fettiges Stadionessen mögen. Kommen wir jetzt aber zu etwas Leichterem, einem Yogi-Beeren-Bananen-Smoothie. Das Rezept verlangt 4 Teile Erdbeere auf 3 Teile Banane. Aber das Rezept gilt nur für eine Portion. Was muss Leelee für mehr als eine Person zusammenmischen? Wir kennen jetzt schon verschiedene Arten, um Verhältnisse aufzuschreiben. Jetzt schauen wir, wie wir unsere Daten mit einer Tabelle ordnen können. Wir wissen, dass wir für jeweils 4 Teile Erdbeere 3 Teile Banane benötigen. Wie wäre es mit Smoothies für zwei Personen? Wenn wir den Anteil an Erdbeeren verdoppeln, haben wir 8 Teile Erdbeere und brauchen dann 6 Teile Banane. Und für drei Personen? Da bekommen wir ein Verhältnis von 12 Teilen Erdbeere zu 9 Teilen Banane. Die Smoothies sind noch immer im perfekten Verhältnis von 4 zu 3 gemischt. Wenn wir nämlich die Verhältnisse als Brüche schreiben, sind diese Brüche gleich. 12 durch 9, lässt sich zu, 4 durch 3 kürzen. Kann Leelee auch einen Supersmoothie für ihren Yogakurs mit 10 Teilnehmern mixen? Da brauchen wir wohl einen größeren Mixer. Leelees letztes Rezpt ist eines für Chew-Mokka-Brownies. Dafür braucht sie 3 Teile Karamell auf 5 Teile Schokolade. Dieses Verhältnis können wir noch auf andere Weise darstellen: In einem Kästchendiagramm. Bei diesem Diagramm steht jedes Kästchen für einen Teil der Gesamtmenge. Das hier zeigt das Verhältnis von Karamell zu Schokolade als 3 zu 5. Aber wie können wir mit dem Diagramm Leelees Rezept verdoppeln? Indem wir ganz einfach den Wert jedes Kästchens, von 1 auf 2 ändern. Jetzt stehen die oberen 3 Rechtecke für 6 Teile Karamell und die 5 Rechtecke unten stehen für 10 Teile Schokolade. Nun haben wir das entsprechende Verhältnis von 6 zu 10. Wenn wir die Verhältnisse als Brüche betrachten, können wir sechs Zehntel zu drei Fünfteln kürzen, die Verhältnisse sind also gleich. Fassen wir zusammen: Ein Verhältnis beschreibt die Beziehung zwischen zwei Zahlen. Man kann sie mit dem Wörtchen "zu" aufschreiben mit einem Doppelpunkt oder als Bruch. Man kann sie auch als Tabellen oder als Kästchendiagramm graphisch darstellen. Nicht vergessen: Die Reihenfolge ist bei Verhältnissen wichtig. Zeit für Leelee, ihre Brownies einem Geschmackstest zu unterziehen. Hey, Leelee. Sag deinen Fans doch mal, wie sie schmecken.

17 Kommentare

17 Kommentare
  1. Mal wieder ein sehr gelungenes Video, vielen Dank dafür! Allerdings: bei 1:36 meintet ihr ,,drei Ganze'' statt ,,drei Eintel'' oder? Ich kann aber auch falsch liegen, denn ihr seid hier die Experten...😊😉
    LG an die Redaktion

    Von Ahsen A., vor 27 Tagen
  2. Hallo Antigona,
    Der Fachchat ist von Montag bis Freitag zwischen 17-19 Uhr für dich da. Zu dieser Zeit findest du unten rechts einen Tab, den du öffnen kannst, um deine Fragen zu stellen.
    Ich hoffe, dass wir dir weiterhelfen können.

    Von Adina Schulz, vor etwa einem Monat
  3. Wo kommt man vom iPad auf den FachChat?

    Von Antigona Halimi, vor etwa einem Monat
  4. Hallo, wo kommt man zum fach-Chat bin neu auf sofatutor 🙃

    Von Antigona Halimi, vor etwa einem Monat
  5. ob das schmeckt... vllt essen wir das mal

    Von Yvonnekunze80, vor 2 Monaten
Mehr Kommentare

Verhältnisse Übung

Du möchtest dein gelerntes Wissen anwenden? Mit den Aufgaben zum Video Verhältnisse kannst du es wiederholen und üben.
  • Gib die korrekten Aussagen zu Verhältnissen an.

    Tipps

    Bist du dir nicht sicher, ob zwei Brüche gleich sind, kannst du sie auf den gleichen Nenner bringen: Bei $\frac{1}{2}$ und $\frac{2}{1}$ ergibt sich:

    $\frac{2}{1} = \frac{4}{2} \neq \frac{1}{2} $

    Lösung

    Diese Aussagen sind falsch:

    • Verhältnisse gibt man immer ausschließlich mit Hilfe von Brüchen an.
    Verhältnisse kannst du auf verschiedene Arten darstellen. Brüche gehören dazu, allerdings kannst du auch das Wort "zu" oder einen Doppelpunkt verwenden.

    • Die Reihenfolge bei Verhältnissen ist egal. $\frac{1}{3}$ ist nämlich das Gleiche wie $\frac{3}{1}$.
    Bei Verhältnissen ist die Reihenfolge von großer Bedeutung. Das Vertauschen der Reihenfolge kehrt das Verhältnis um.

    Diese Aussagen sind richtig:

    • Verhältnisse muss man immer in der richtigen Reihenfolge angeben.
    • Verhältnisse kann man durch das Wort "zu", einen Doppelpunkt oder einen Bruch angeben.
    • In einem Kästchendiagramm können Verhältnisse graphisch dargestellt werden.
  • Bestimme die Verhältnisse.

    Tipps

    Um die Anteile in der Tabelle zu berechnen, kannst du von der ersten Zeile ausgehen. Du kommst zu den Einträgen einer anderen Zeile, indem du alle Einträge in der ersten Zeile mit der gleichen Zahl multiplizierst.

    Das Multiplizieren einer Zeile mit der gleichen Zahl entspricht dem Erweitern eines Bruchs.

    Lösung

    Um die Anteile in der Tabelle zu berechnen, kannst du von der ersten Zeile ausgehen. Du kommst zu den Einträgen einer anderen Zeile, indem du alle Einträge in der ersten Zeile mit der gleichen Zahl multiplizierst.

    Dabei bleibt das Verhältnis von $4:3$ immer gleich. Das entspricht dem Erweitern eines Bruchs. In der zweiten Zeile multiplizierst du also alle Einträge mit $2$. Dann erhältst du für die Anteile der Erdbeeren:

    $4 \cdot 2 = 8$

    und für die Bananen:

    $3 \cdot 2 = 6$.

    Das Verhältnis ist immer noch das Gleiche:

    $\frac{8}{6}= \frac{4}{3}$.

    Die anderen Einträge der Tabelle kannst du genauso bestimmen.

  • Erschließe die gleichen Verhältnisse.

    Tipps

    Verhältnisse kannst du durch das Wort „zu“, einen Doppelpunkt oder einen Bruch angeben. $5$ zu $1$, $5:1$ und $\frac{5}{1}$ bedeuten das Gleiche.

    So wie du Brüche erweitern kannst, kannst du die beiden Anteile der Verhältnisse auch mit der jeweils gleichen Zahl multiplizieren. $10$ zu $2$ gibt das gleiche Verhältnis an wie $5$ zu $1$.

    Lösung

    Verhältnisse kannst du durch das Wort „zu“, einen Doppelpunkt oder einen Bruch angeben. $5$ zu $1$, $5:1$ und $\frac{5}{1}$ bedeuten das Gleiche. Allerdings musst du immer die Reihenfolge beachten. So wie du Brüche erweitern kannst, kannst du die beiden Anteile der Verhältnisse auch mit der jeweils gleichen Zahl multiplizieren. $10$ zu $2$ gibt das gleiche Verhältnis an wie $5$ zu $1$. Mit diesen Überlegungen kannst du die gleichen Verhältnisse bestimmen:

    • $3$ zu $1$ ist das gleiche Verhältnis wie $\frac{6}{2}$.
    • $4 : 5$ bedeutet das Gleiche wie $4$ zu $5$.
    • $\frac{12}{9}$ ist das gleiche Verhältnis wie $4$ zu $3$.
    • $2$ zu $5$ und $\frac{10}{25}$ geben das gleiche Verhältnis an.
  • Bestimme die Verhältnisse.

    Tipps

    Das erste Verhältnis von Stunden zu Müll ist mit $1:3$ gegeben.

    Lösung

    Das erste Verhältnis von Stunden zu Müll ist mit $1:3$ gegeben. Um die Anteile in der Tabelle zu berechnen, kannst du von der ersten Zeile ausgehen. Du kommst zu den Einträgen einer anderen Zeile, indem Du alle Einträge in der ersten Zeile mit der gleichen Zahl multiplizierst.

    Dabei bleibt das Verhältnis von $1:3$ immer gleich. In der zweiten Zeile multiplizierst du also alle Einträge mit $2$. Dann erhältst du zum Beispiel für $2$ Stunden:

    $2 \cdot 3= 6$ Kilogramm Müll.

    Das Verhältnis von $1:3$ bleibt hier gleich:

    $\frac{2}{6}= \frac{1}{3}$.

  • Bestimme die korrekten Aussagen zu Kästchendiagrammen.

    Tipps

    Im Diagramm sind drei Teile Karamell und fünf Teile Schokolade zu sehen.

    Das Verhältnis gibst du am besten in der einfachsten Form an, also mit den kleinstmöglichen Zahlen. Ist es in einem Bruch dargestellt, kürze ihn soweit wie möglich.

    Lösung

    Diese Aussagen sind falsch:

    • Lässt man jedes Kästchen für $2$ Teile der Gesamtmenge stehen, dann verändert sich das Verhältnis.
    Solange jedes Kästchen für den gleichen Anteil an der Gesamtmenge steht, verändert sich nur die Gesamtmenge, aber nicht das Verhältnis der Zutaten.

    • Das Diagramm zeigt ein Verhältnis von Karamell zu Schokolade von $\frac{5}{3}$.
    Das Diagramm zeigt 3 Kästchen Karamell und 5 Kästchen Schokolade. Hier wurde das Verhältnis vertauscht.

    Diese Aussagen sind wahr:

    • Das Diagramm zeigt ein Verhältnis von Karamell zu Schokolade von $3:5$.
    • Steht jedes Kästchen für $3$ Teile der Gesamtmenge, dann hat sich die Gesamtmenge an Brownies verdreifacht.
    • Um das Verhältnis anzugeben, steht im Diagramm jedes Kästchen für einen Teil der Gesamtmenge.
    Das Verhältnis gibst du am besten in der einfachsten Form an, also mit den kleinstmöglichen Zahlen. Ist es in einem Bruch dargestellt, kürze ihn soweit wie möglich.

  • Erarbeite, wie man mit Verhältnisgleichungen rechnet.

    Tipps

    Gleiche Verhältnisse kannst du natürlich auch gleichsetzen. Das ist hilfreich, wenn du bereits ein Verhältnis und einen Anteil gegeben hast und den passenden Anteil berechnen willst, der dieses Verhältnis erhält.

    In der Verhältnisgleichung wird jedem Anteil eine Variable zugeordnet. Die zugeordneten Variablen kannst du dann in die Verhältnisgleichung einsetzen.

    Lösung

    Der Lückentext kann so vervollständigt werden:

    • In einer Verhältnisgleichung werden zwei Verhältnisse $a:b$ und $c:d$ gleichgesetzt. Also:
    • $\frac{a}{b}=\frac{c}{d}$
    Gleiche Verhältnisse kannst du natürlich auch gleichsetzen. Das ist hilfreich, wenn du bereits ein Verhältnis und einen Anteil gegeben hast und den passenden Anteil berechnen willst, der dieses Verhältnis erhält.

    • Verhältnisgleichungen werden häufig verwendet um aus drei bekannten Anteilen einen vierten auszurechnen. In unserem Fall ist das gewünschte Verhältnis von Kies $a=4$ zu Zement $b=1$, sowie eine gegebene Menge Kies $c=40$ bekannt.
    In der Verhältnisgleichung wird jedem Anteil eine Variable zugeordnet.

    • Damit kann sie die Verhältnisgleichung aufstellen:
    • $\frac{4}{1}=\frac{40}{d}$
    Die zugeordneten Variablen kannst du dann in die Verhältnisgleichung einsetzen.

    • (...) Um das Mischungsverhältnis von $4:1$ zu erhalten, benötigt Sarah also $10~\text{kg}$ Zement.
    Die Lösung der Gleichung gibt die benötigte Menge Zement an.

    • (...) Wieder stellt sie eine Verhältnisgleichung auf:
    • $\frac{4}{1}=\frac{c}{8}$
    • Sie benötigt also nur $32~\text{kg}$ ihres Kieses.
    Die Berechnung funktioniert hier analog zur ersten Gleichung.

30 Tage kostenlos testen
Mit Spaß Noten verbessern
Im Vollzugang erhältst du:

10.862

Lernvideos

44.109

Übungen

38.669

Arbeitsblätter

24h

Hilfe von Lehrer/
-innen

running yeti

In allen Fächern und Klassenstufen.

Von Expert/-innen erstellt und angepasst an die Lehrpläne der Bundesländer.

30 Tage kostenlos testen

Testphase jederzeit online beenden