Über 1,6 Millionen Schüler*innen nutzen sofatutor!
  • 93%

    haben mit sofatutor ihre Noten in mindestens einem Fach verbessert

  • 94%

    verstehen den Schulstoff mit sofatutor besser

  • 92%

    können sich mit sofatutor besser auf Schularbeiten vorbereiten

Verschiedene Verhältnisse vergleichen

Du willst ganz einfach ein neues Thema lernen
in nur 12 Minuten?
Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
  • Das Mädchen lernt 5 Minuten mit dem Computer 5 Minuten verstehen

    Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.

    92%
    der Schüler*innen hilft sofatutor beim selbstständigen Lernen.
  • Das Mädchen übt 5 Minuten auf dem Tablet 5 Minuten üben

    Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.

    93%
    der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert.
  • Das Mädchen stellt fragen und nutzt dafür ein Tablet 2 Minuten Fragen stellen

    Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.

    94%
    der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.
Bewertung

Ø 3.8 / 66 Bewertungen
Die Autor*innen
Avatar
Team Digital
Verschiedene Verhältnisse vergleichen
lernst du in der 5. Klasse - 6. Klasse - 7. Klasse - 8. Klasse

Verschiedene Verhältnisse vergleichen Übung

Du möchtest dein gelerntes Wissen anwenden? Mit den Aufgaben zum Video Verschiedene Verhältnisse vergleichen kannst du es wiederholen und üben.
  • Beschreibe den Vergleich von Verhältnissen.

    Tipps

    Eine Minute hat $60$ Sekunden. Um zu bestimmen, in wie viele Abschnitte das Kreisdiagramm eingeteilt werden muss, musst du die Anzahl der Sekunden in einer Minute durch die Anzahl der Sekunden in einem Abschnitt teilen.

    Verhältnisse kannst du nur vergleichen, wenn du sie so umrechnest, dass der Wert durch den geteilt wird, in beiden Verhältnissen gleich ist. Hier rechnen wir alle Verhältnisse so um, dass durch eine Minute geteilt wird.

    Lösung

    So kannst du den Lückentext vervollständigen:

    • Lorenzos erster Beat hat einen Takt von $\dfrac{15\frac{1}{2} ~\text{Beats}}{15 ~\text{Sekunden}}$. Um ihn mit dem von Joko zu vergleichen, berechnen sie, wie viele Beats pro Minute das sind. Dazu erstellen sie ein Kreisdiagramm. Dieses wird in vier Abschnitte unterteilt.
    Eine Minute hat $60$ Sekunden. Um zu bestimmen, in wie viele Abschnitte das Kreisdiagramm eingeteilt werden muss, rechnen wir:

    $\frac{60}{15}=4$

    • Jeder dieser Abschnitte entspricht also $15$ Sekunden und gleichzeitig $15\frac{1}{2} $ Beats. Um die Anzahl an Beats pro Minute zu berechnen, addieren sie alle Einträge des Kreises. Sie erhalten:
    • $15\frac{1}{2} +15\frac{1}{2} +15\frac{1}{2} +15\frac{1}{2} =62$
    • $\dfrac{15\frac{1}{2} ~\text{Beats}}{15 ~\text{Sekunden}}$ entsprechen also $62~\dfrac{\text{Beats}}{\text{Minute}}$.

    Die Beats pro $12$ Sekunden haben wir in Beats pro Minute umgerechnet, damit wir sie mit Jokos Beat vergleichen können. Möchtest du Verhältnisse vergleichen, musst du sie so umrechnen, dass sie den gleichen Nenner haben.

    • Jokos Beat hat einen Takt von $\dfrac{5\frac{4}{5} ~\text{Beats}}{12~\text{Sekunden}}$. Auch diesen rechnen sie in Beats pro Minute um.
    Da wir den ersten Beat in Beats pro Minute umgerechnet haben, müssen wir den zweiten ebenfalls in diese Einheit umrechnen. Nur dann können wir die beiden Beats vergleichen.

    • Diesmal teilen sie das Kreisdiagramm in fünf gleich große Teile ein.
    Hier erhalten wir: $\frac{60}{12}=5$

    • Jeder dieser Abschnitte entspricht also $12$ Sekunden und gleichzeitig $5\frac{4}{5} $ Beats. Wieder addieren sie alle Einträge des Kreises. Sie erhalten:
    • $5\frac{4}{5} +5\frac{4}{5} +5\frac{4}{5} +5\frac{4}{5} +5\frac{4}{5} =29$.
    • $\dfrac{5\frac{4}{5} ~\text{Beats}}{12 ~\text{Sekunden}}$ entsprechen also $29~\dfrac{\text{Beats}}{\text{Minute}}$.

    Jetzt können wir die Beats vergleichen: Lorenzos Beat ist um einiges größer und damit schneller als Jokos.

  • Beschreibe den Vergleich von Verhältnissen.

    Tipps

    Durch wiederholte Addition kannst du die Verhältnisse auf den gleichen Nenner bringen.

    Du kannst jeweils die Beats und die Sekunden auf einer Leiste auftragen und die jeweiligen Werte zu sich selbst addieren.

    Lösung

    Durch wiederholte Addition kannst du die Verhältnisse auf den gleichen Nenner bringen. Hier tragen wir jeweils die Beats und die Sekunden auf einer Leiste auf und addieren den Wert zu sich selbst. Lorenzos Beat müssen wir viermal zu sich selbst addieren. Denn:

    $15+15+15+15=60$

    Nach viermaliger Addition sind wir also bei einer Minute.

    Addieren wir die Beats viermal, erhalten wir:

    $35\frac{1}{2}+35\frac{1}{2}+35\frac{1}{2}+35\frac{1}{2}= 142$

    Wir haben also ein Beat von $\frac{142~\text{Beats}}{\text{Minute}}$.

    Beim zweiten Beat gehen wir genauso vor. Hier addieren wir jeweils sechsmal. Denn:

    $10+10+10+10+10+10=60$

    Daher erhalten wir für die Beats:

    $23 \frac{2}{3}+23 \frac{2}{3}+23 \frac{2}{3}+23 \frac{2}{3}+23 \frac{2}{3}+23 \frac{2}{3}=142$

    Die beiden Beats haben folglich den gleichen Takt von $\frac{142~\text{Beats}}{\text{Minute}}$.

  • Ermittle einen äquivalenten Wert des Verhältnisses.

    Tipps

    Du kannst die Verhältnisse umrechnen, indem du entweder ein Kreisdiagramm oder eine Doppelleiste anfertigst und die entsprechenden Zahlen einträgst.

    Beachte, dass $60$ Minuten einer Stunde entsprechen.

    Lösung

    Du kannst die Verhältnisse umrechnen, indem du entweder ein Kreisdiagramm oder eine Doppelleiste anfertigst und die entsprechenden Zahlen einträgst. Auf diese Weise erhältst du folgende Verhältnisse:

    Erstellen wir ein Kreisdiagramm für das erste Verhältnis, teilen wir den Kreis in fünf gleich große Teile, denn:

    $60:12=5$

    Da in jedem dieser fünf Teile $12$ Seiten gelesen werden, addieren wir:

    $12+12+12+12+12=60$

    • $\dfrac{12 ~\text{Seiten}}{12 ~\text{Minuten}}$ entsprechen also $60\dfrac{\text{Seiten}}{\text{Stunde}}$.

    Rechts oben siehst du eine Doppelleiste, mit der du eines der Verhältnisse umrechnen kannst. Beachte, dass $60$ Minuten einer Stunde entsprechen.

    • $\dfrac{10 ~\text{Seiten}}{15 ~\text{Minuten}}$ entsprechen $40\dfrac{\text{Seiten}}{\text{Stunde}}$.

    Die anderen Rechnungen kannst du auf eine dieser Arten lösen. So ergibt sich:

    • $\dfrac{5 ~\text{Seiten}}{20 ~\text{Minuten}}$ entsprechen $15\dfrac{\text{Seiten}}{\text{Stunde}}$.
    • $\dfrac{1 ~\text{Seite}}{5 ~\text{Minuten}}$ entsprechen $12\dfrac{\text{Seiten}}{\text{Stunde}}$.
  • Erschließe, welche der Verhältnisse gleich sind.

    Tipps

    Du kannst die Verhältnisse vergleichen, indem du sie auf Bakterien pro Stunde umrechnest. Das tust du, indem du entweder ein Kreisdiagramm oder eine Doppelleiste anfertigst und die entsprechenden Zahlen einträgst.

    Lösung

    Du kannst die Verhältnisse vergleichen, indem du sie auf Bakterien pro Stunde umrechnest. Das tust du, indem du entweder ein Kreisdiagramm oder eine Doppelleiste anfertigst und die entsprechenden Zahlen einträgst. Für das erste Paar erhältst du:

    Fertigst du ein Kreisdiagramm für $\dfrac{300 ~\text{Bakterien}}{12 ~\text{Minuten}}$ an, musst du es in fünf Teile unterteilen, denn:

    $60:12=5$

    Da in jedem dieser fünf Teile $300$ Bakterien entstehen, addieren wir:

    $300+300+300+300+300=1500$

    Fertigen wir ein Kreisdiagramm für $\dfrac{500~\text{Bakterien}}{20~ \text{Minuten}}$ an, unterteilen wir es in drei Teile, denn:

    $60:20=3$

    Da in jedem dieser Teile $500$ Bakterien entstehen, erhalten wir:

    $500+500+500=1500$

    Somit ergibt sich:

    • $\dfrac{300 ~\text{Bakterien}}{12 ~\text{Minuten}}=\dfrac{500~\text{Bakterien}}{20~ \text{Minuten}}=1500\ \dfrac{\text{Bakterien}}{ \text{Stunde}}$

    Die anderen Paare können wir genauso bestimmen:

    • $\dfrac{900~\text{Bakterien}}{30~ \text{Minuten}}= \dfrac{300 ~\text{Bakterien}}{10 ~\text{Minuten}}=1800\ \dfrac{\text{Bakterien}}{ \text{Stunde}}$
    • $\dfrac{200 ~\text{Bakterien}}{10 ~\text{Minuten}}=\dfrac{100 ~\text{Bakterien}}{5 ~\text{Minuten}}=1200\ \dfrac{\text{Bakterien}}{ \text{Stunde}}$
    • $\dfrac{65 ~\text{Bakterien}}{3 ~\text{Minuten}}=\dfrac{130 ~\text{Bakterien}}{6 ~\text{Minuten}}=1300\ \dfrac{\text{Bakterien}}{ \text{Stunde}}$
  • Bestimme die korrekten Aussagen zum Vergleichen von Verhältnissen.

    Tipps

    Äquivalent bedeutet so viel wie gleichwertig.

    Vergleichst du beispielsweise die Verhältnisse $\frac{5}{12}$ und $\frac{6}{10}$, dann musst du sie so umschreiben, dass jeweils $60$ im Nenner des Bruchs steht.

    Lösung

    Diese Aussagen sind falsch:

    • Sind zwei Verhältnisse nicht gleich, nennt man sie auch äquivalent.
    Äquivalent bedeutet so viel wie gleichwertig. Sind zwei Verhältnisse äquivalent, sind sie also gleich.

    • Haben zwei Verhältnisse ungleiche Nenner, kannst du sie prinzipiell nicht vergleichen. Du kannst die Verhältnisse auch nicht umformen, sodass sie vergleichbar sind.
    Du kannst Verhältnisse umschreiben, indem du sie erweiterst. Dabei verändern sich die Verhältnisse nicht. Durch dieses Umschreiben kannst du sie anschließend vergleichen.

    Diese Aussagen sind richtig:

    • Um Verhältnisse vergleichen zu können, musst du die Verhältnisse auf den gleichen Nenner bringen.
    Nur dann kannst du einen Vergleich anstellen.

    • Beim Vergleichen von Verhältnissen kann ein Kreisdiagramm hilfreich sein.
    • Eine Doppelleiste kann zum Vergleichen von Verhältnissen verwendet werden.
    Diese beiden Verfahren kannst du beim Vergleichen von Verhältnissen verwenden.

  • Ermittle, ob die Verhältnisse gleich sind.

    Tipps

    Du kannst herausfinden, ob die Verhältnisse gleich sind, indem du Doppelleisten anfertigst und die jeweiligen Zahlen wiederholt addierst. Findest du eine Stelle auf der Leiste, bei der beide Zahlen den gleichen unteren Wert haben, dann kannst du die Zahlen vergleichen.

    Lösung

    Du kannst herausfinden, ob die Verhältnisse gleich sind, indem du Doppelleisten anfertigst und die jeweiligen Zahlen wiederholt addierst. Findest du eine Stelle auf der Leiste, bei der beide Zahlen den gleichen unteren Wert haben, dann kannst du die Zahlen vergleichen. Hier rechts siehst du die Doppelleisten für die ersten Verhältnisse.

    Auf der unteren Leiste des ersten Verhältnisses $\frac{4}{8}$ addieren wir wiederholt $8$, bis wir bei $40$ angelangt sind. Bei der oberen Leiste addieren wir genauso wiederholt $4$, bis wir bei $20$ angelangt sind.

    Auf der unteren Leiste des zweiten Verhältnisses $\frac{5}{10}$ addieren wir wiederholt $10$, bis wir bei $40$ angelangt sind. Bei der oberen Leiste addieren wir genauso wiederholt $5$, bis wir bei $20$ angelangt sind. Weil wir beide Verhältnisse so umschreiben können, dass genau dasselbe Verhältnis entsteht, müssen die beiden gegebenen Verhältnisse gleich sein.

    Dieses Verfahren können wir für alle Verhältnisse anwenden. Damit erhalten wir, dass diese Verhältnisse nicht gleich sind:

    • $\frac{3}{8} \neq \frac{2}{3}$
    Hier erhalten wir: $\frac{3}{8}= \frac{9}{24}$ und $\frac{2}{3}= \frac{16}{24}$. Die Verhältnisse sind also nicht gleich.

    • $\frac{2}{12} \neq \frac{1}{5}$
    Hier erhalten wir: $\frac{1}{5}= \frac{12}{60}$ und $\frac{2}{12}= \frac{10}{60}$. Die Verhältnisse sind also nicht gleich.

    Diese Verhältnisse sind gleich:

    • $\frac{20}{40}=\frac{4}{8}=\frac{5}{10}$
    • $\frac{12}{30}=\frac{4}{10} = \frac{6}{15}$
    • $\frac{12}{42}=\frac{4}{14}=\frac{6}{21}$
30 Tage kostenlos testen
Mit Spaß Noten verbessern
und vollen Zugriff erhalten auf

8.299

sofaheld-Level

6.601

vorgefertigte
Vokabeln

7.943

Lernvideos

37.087

Übungen

34.333

Arbeitsblätter

24h

Hilfe von Lehrer*
innen

laufender Yeti

Inhalte für alle Fächer und Klassenstufen.
Von Expert*innen erstellt und angepasst an die Lehrpläne der Bundesländer.

30 Tage kostenlos testen

Testphase jederzeit online beenden