Über 1,6 Millionen Schüler*innen nutzen sofatutor!
  • 93%

    haben mit sofatutor ihre Noten in mindestens einem Fach verbessert

  • 94%

    verstehen den Schulstoff mit sofatutor besser

  • 92%

    können sich mit sofatutor besser auf Schularbeiten vorbereiten

Verhältnisse und ihre Umkehrungen

Verstehen der Orchesterzusammensetzung: Holzbläser, Blechbläser, Streicher und Schlaginstrumente müssen im passenden Verhältnis zueinander stehen. Dafür benutzt man Bruchzahlen wie 5:4 oder 5/4. Wichtig ist auch, dass du lernst, diese Verhältnisse zu kürzen und umzukehren. Hat dich das interessiert? All das und noch mehr findest du im folgenden Text!

Du willst ganz einfach ein neues Thema lernen
in nur 12 Minuten?
Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
  • Das Mädchen lernt 5 Minuten mit dem Computer 5 Minuten verstehen

    Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.

    92%
    der Schüler*innen hilft sofatutor beim selbstständigen Lernen.
  • Das Mädchen übt 5 Minuten auf dem Tablet 5 Minuten üben

    Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.

    93%
    der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert.
  • Das Mädchen stellt fragen und nutzt dafür ein Tablet 2 Minuten Fragen stellen

    Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.

    94%
    der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.
Bewertung

Ø 3.7 / 135 Bewertungen
Die Autor*innen
Avatar
Team Digital
Verhältnisse und ihre Umkehrungen
lernst du in der 5. Klasse - 6. Klasse - 7. Klasse - 8. Klasse

Verhältnisse und ihre Umkehrungen Übung

Du möchtest dein gelerntes Wissen anwenden? Mit den Aufgaben zum Video Verhältnisse und ihre Umkehrungen kannst du es wiederholen und üben.
  • Gib die zutreffenden Verhältnisse an.

    Tipps

    Das Verhältnis $3$ Liter weiße Farbe zu $1$ Liter blaue Farbe kannst du wie folgt angeben:

    • $3$ zu $1$,
    • $3:1$ oder
    • $\frac 31$.

    Du solltest Verhältnisse so weit wie möglich kürzen. Hierzu bestimmst du zunächst den größten gemeinsamen Teiler $\text{ggT}$.

    Betrachte dieses Beispiel:

    $9:3$

    Mit dem $\text{ggT}(9;3)=3$ folgt:

    $\frac 93:\frac 33$ $\rightarrow$ $3:1$

    Lösung

    Aus folgenden Instrumenten setzt sich das Orchester zusammen:

    • $5$ Holzbläser
    • $4$ Blechbläser
    • $20$ Streicher
    • $1$ Schlaginstrument
    Wir suchen das Verhältnis Blechbläser zu Streicher. Dieses lautet:

    $4:20$

    Für die Schreibweise als Bruch erhalten wir:

    $\frac 4{20}$

    Da Nenner und Zähler einen gemeinsamen Teiler besitzen, kann man diesen Bruch noch kürzen. Mit dem $\text{ggT}(4;20)=4$ folgt:

    $\frac 15$ bzw. $1:5$

  • Bestimme die gesuchten Verhältnisse.

    Tipps

    Um die Gesamtzahl der Instrumente zu finden, addierst du die Anzahl aller Instrumente.

    Das Verhältnis von $a=5$ zu $b=25$ lautet:

    $5:25$

    Dieses kann man kürzen:

    $1:5$

    Du kürzt ein Verhältnis so weit wie möglich, indem du beide Zahlen durch ihren größten gemeinsamen Teiler teilst.

    Beispiel:

    $\text{ggT}(5;25)=5$

    Lösung

    Aus folgenden Instrumenten setzt sich das betrachtete Orchester zusammen:

    • $5$ Holzbläser
    • $4$ Blechbläser
    • $20$ Streicher
    • $1$ Schlaginstrument
    Wir bestimmen zunächst das Verhältnis von Holzbläsern zur Gesamtzahl der Instrumente im Orchester. Diese erhalten wir, indem wir die Anzahl aller Instrumente addieren:

    $5+4+20+1=30$

    So erhalten wir das folgende Verhältnis:

    $5:30$

    Dieses Verhältnis können wir noch so weit wie möglich kürzen:

    $1:6$

    Wir können auch bestimmen, in welchem Verhältnis die Nicht-Holzbläser zur Gesamtzahl der Instrumente im Orchester stehen. Im Orchester gibt es $30-5=25$ Instrumente, die keine Holzbläser sind.

    Somit erhalten wir folgendes Verhältnis:

    $25:30$

    Vollständig gekürzt lautet es:

    $5:6$

  • Ermittle die gesuchten Verhältnisse.

    Tipps

    Kürze die Verhältnisse so weit wie möglich, indem du beide Zahlen durch ihren größten gemeinsamen Teiler teilst. Schaue dir hierzu das folgende Beispiel an:

    $~4:28$

    Mit dem $\text{ggT}(4;28)=4$ folgt das gekürzte Verhältnis:

    $~1:7$

    Das gekürzte Verhältnis von $100\ \text{g}$ Butter zu $200\ \text{g}$ Mehl entspricht $1:2$.

    Lösung

    Wir betrachten eine Gruppe bestehend aus:

    • $18$ Schülerinnen
    • $12$ Schülern
    • $2$ Lehrerinnen
    • $3$ Lehrern
    Ausgehend von diesen Angaben wollen wir einige Verhältnisse aufstellen. Diese möchten wir so weit wie möglich kürzen, indem wir beide Zahlen durch ihren größten gemeinsamen Teiler teilen.

    Verhältnis von Schülerinnen zu Schülern

    Dieses Verhältnis entspricht $18:12$. Mit dem $\text{ggT}(18;12)=6$ erhalten wir $3:2$.

    Verhältnis von Lehrerinnen zu Schülern

    Hier lautet das Verhältnis $2:12$. Der $\text{ggT}(2;12)=3$ liefert das gekürzte Verhältnis $1:6$.

    Verhältnis von Schülern zu Schülerinnen

    Das Verhältnis $12:18$ können wir mit dem $\text{ggT}(12;18)=6$ zu $2:3$ kürzen.

    Verhältnis von Lehrern zu Schülern

    Dieses Verhältnis lautet $3:12$ und mit dem $\text{ggT}(3;12)=3$ erhalten wir $1:4$.

    Verhältnis von Schülerinnen zu Lehrern

    Wir stellen das Verhältnis $18:3$ auf. Dieses kürzen wir mit dem $\text{ggT}(18;3)=3$ zu dem Verhältnis $6:1$.

  • Bestimme die gesuchten Verhältnisse.

    Tipps

    Das Verhältnis von der Anzahl oranger Perlen zu der Anzahl weißer Perlen entspricht $12:10$. Mit dem $\text{ggT}(12;10)=2$ kann dieses Verhältnis so weit wie möglich gekürzt werden zu $6:5$.

    Achte auf die Reihenfolge! Verhältnis von:

    • der Anzahl oranger Perlen zu der Anzahl weißer Perlen: $6:5$
    • der Anzahl weißer Perlen zu der Anzahl oranger Perlen: $5:6$
    Lösung

    Wir kennen folgende Angaben für die Zusammenstellung einer Perlenkette:

    • $10$ weiße Perlen
    • $4$ blaue Perlen
    • $6$ grüne Perlen
    • $12$ orange Perlen
    Mit diesen Angaben können wir die gesuchten Verhältnisse bestimmen:

    Verhältnis von der Anzahl weißer zu der Anzahl blauer Perlen

    Das Verhältnis $10:4$ können wir mit dem $\text{ggT}(10;4)=2$ kürzen zu $5:2$.

    Verhältnis von der Anzahl grüner zu der Anzahl weißer Perlen

    Wir betrachten das Verhältnis $6:10$. Dieses kürzen wir mit dem $\text{ggT}(6;10)=2$ zu $3:5$.

    Verhältnis von der Anzahl oranger zu der Anzahl blauer Perlen

    Das Verhältnis entspricht $12:4$. Gekürzt mit dem $\text{ggT}(12;4)=4$ erhalten wir $3:1$.

    Verhältnis von der Anzahl blauer zu der Gesamtzahl der Perlen

    Das Verhältnis $4:32$ wird mit dem $\text{ggT}(4;32)=2$ gekürzt. Es folgt dann $1:8$.

  • Gib die Eigenschaften von Verhältnissen und ihren Umkehrungen an.

    Tipps

    Betrachtest du $3$ Pkw und $5$ Lkw, so liegt folgendes Verhältnis von Pkw zu Lkw vor:

    $3:5$

    Dieses Verhältnis kannst du auch umkehren, sodass es das Verhältnis von Lkw zu Pkw beschreibt:

    $5:3$

    Das Rezept für einen Plätzchenteig enthält $200\ \text{g}$ Butter und $400\ \text{g}$ Mehl. Das Verhältnis von Zucker zu Mehl entspricht also $200:400$. Dieses können wir auch als $1:2$ angeben.

    Beide Verhältnisse verraten, dass die Mehlmenge doppelt so groß ist wie die Zuckermenge.

    Lösung

    Wir suchen das Verhältnis von $10$ Holzbläsern zu $8$ Blechbläsern. Dieses entspricht:

    $10:8\quad $ oder $\quad \frac {10}8$

    Das bedeutet, dass für je $10$ Holzbläser $8$ Blechbläser im Orchester spielen.

    Ein Verhältnis sollte so weit wie möglich gekürzt werden. Hierzu teilen wir beide Zahlen durch ihren größten gemeinsamen Teiler. Mit dem $\text{ggT}(10;8)=2$ erhalten wir das Verhältnis $5:4$.

    Kehrt man ein Verhältnis um, so geht die darin enthaltene Information nicht verloren. Die Umkehrung entspricht hier $4:5$. Nun wissen wir, dass für je $4$ Blechbläser $5$ Holzbläser im Orchester spielen.

  • Ermittle die fehlenden Werte ausgehend von den vorgegebenen Verhältnissen.

    Tipps

    Wenn Butter zu Mehl in einem Verhältnis von $1:2$ gemischt werden soll, so kannst du für $100\ \text{g}$ Mehl die Buttermenge bestimmen, indem du dieses Verhältnis auf $100$ erweiterst: $50:100$.

    Also entspricht die Buttermenge $50\ \text{g}$.

    Wenn du ein Verhältnis erweiterst, musst du beide Zahlen mit derselben Zahl multiplizieren.

    Lösung

    Im Folgenden betrachten wir einige Mischungsverhältnisse, zu welchen wir jeweils die fehlende Farbmenge bestimmen möchten. Für die Berechnung einer fehlenden Menge wird das angegebene Verhältnis als Bruch geschrieben und dieser durch Erweitern oder Kürzen auf die gewünschte Menge gebracht.

    Mischungsverhältnis für die hellblaue Farbe: $10:1$

    Gesucht ist die Menge der blauen Farbe für $500\ \text{ml}$ weiße Farbe und einem Mischungsverhältnis von weißer zu blauer Farbe von $10:1$:

    $\dfrac{\text{Menge weißer Farbe}}{\text{Menge blauer Farbe}}=\dfrac {10}1=\dfrac{10\cdot 50}{1\cdot 50}=\dfrac {500}{50}$

    Amelia benötigt also $50~\text{ml}$ blaue Farbe.

    Mischungsverhältnis für die himmelblaue Farbe: $5:1$

    Wir bestimmen die Menge der weißen Farbe für $40\ \text{ml}$ blaue Farbe und einem Mischungsverhältnis von weißer zu blauer Farbe von $5:1$:

    $\dfrac{\text{Menge weißer Farbe}}{\text{Menge blauer Farbe}}=\dfrac {5}1=\dfrac{5\cdot 40}{1\cdot 40}=\dfrac {200}{40}$

    Amelia benötigt also $200~\text{ml}$ weiße Farbe.

    Mischungsverhältnis für die taubenblaue Farbe: $2:1$

    Wir betrachten das Mischungsverhältnis von weißer zu blauer Farbe von $2:1$. Es ist für $750\ \text{ml}$ weiße Farbe die Menge an blauer Farbe gesucht:

    $\dfrac{\text{Menge weißer Farbe}}{\text{Menge blauer Farbe}}=\dfrac {2}1=\dfrac{2\cdot 375}{1\cdot 375}=\dfrac {750}{375}$

    Amelia benötigt also $375~\text{ml}$ blaue Farbe.

    Mischungsverhältnis für die dunkelblaue Farbe: $1:3$

    Wir möchten die Menge der blauen Farbe bestimmen. Dabei gehen wir von $25\ \text{ml}$ weißer Farbe und einem Mischungsverhältnis von weißer zu blauer Farbe von $1:3$ aus:

    $\dfrac{\text{Menge weißer Farbe}}{\text{Menge blauer Farbe}}=\dfrac 13=\dfrac{1\cdot 25}{3\cdot 25}=\dfrac {25}{75}$

    Amelia benötigt also $75~\text{ml}$ blaue Farbe.