Über 1,6 Millionen Schüler*innen nutzen sofatutor!
  • 93%

    haben mit sofatutor ihre Noten in mindestens einem Fach verbessert

  • 94%

    verstehen den Schulstoff mit sofatutor besser

  • 92%

    können sich mit sofatutor besser auf Schularbeiten vorbereiten

Steigung von proportionalen Funktionen

Du willst ganz einfach ein neues Thema lernen
in nur 12 Minuten?
Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
  • Das Mädchen lernt 5 Minuten mit dem Computer 5 Minuten verstehen

    Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.

    92%
    der Schüler*innen hilft sofatutor beim selbstständigen Lernen.
  • Das Mädchen übt 5 Minuten auf dem Tablet 5 Minuten üben

    Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.

    93%
    der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert.
  • Das Mädchen stellt fragen und nutzt dafür ein Tablet 2 Minuten Fragen stellen

    Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.

    94%
    der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.
Bewertung

Ø 4.4 / 108 Bewertungen
Die Autor*innen
Avatar
Team Digital
Steigung von proportionalen Funktionen
lernst du in der 7. Klasse - 8. Klasse

Steigung von proportionalen Funktionen Übung

Du möchtest dein gelerntes Wissen anwenden? Mit den Aufgaben zum Video Steigung von proportionalen Funktionen kannst du es wiederholen und üben.
  • Vervollständige die gegebene Wertetabelle einer proportionalen Zuordnung.

    Tipps

    Der Graph einer proportionalen Funktion verläuft stets durch den Ursprung.

    Eine proportionale Funktion hat die Form $f(x) = m \cdot x$ mit dem Proportionalitätsfaktor $m$.

    Bei einer proportionalen Zuordnung wachsen die Funktionswerte in derselben Proportion wie die Variable. Das heißt, die Verdoppelung der Variablen führt auch zur Verdoppelung des Funktionswertes.

    Lösung

    Rudi zerlasert an $2$ Arbeitstagen $25$ Asteroiden.

    An doppelt so vielen Tagen zerstört er auch doppelt so viele Asteroiden, also an $4$ Tagen $50$ Asteroiden.

    An einem Tag schafft er dagegen nur halb so viele Asteroiden wie an zwei Tagen. Das ergibt im Schnitt $12,5$ Asteroiden pro Tag.

    Und wenn Rudi gar nicht, also $0$ Tage, arbeitet, schafft er gar nichts, also $0$ Asteroiden.

    Im Bild siehst du die richtig ausgefüllte Wertetabelle.

  • Bestimme die Funktionsgleichung einer proportionalen Funktion und berechne den gesuchten Funktionswert.

    Tipps

    Um die Steigung einer Geraden zu berechnen, die von links nach rechts ansteigt, teilst du die Anzahl der Einheiten nach oben durch die Anzahl der Einheiten nach rechts.

    Fällt die Gerade von links nach rechts ab, so ist die Steigung negativ.

    Die Funktion eines proportionalen Zusammenhangs lautet:

    $f(x) = m \cdot x$

    Hierbei ist $m$ der Proportionalitätsfaktor bzw. die Steigung der Geraden.

    Lösung

    Die Funktion des Space-Kaffee-Verbrauchs ist eine proportionale Funktion. Sie hat also diese Form:

    $f(x) = m \cdot x$

    Hierbei ist $m$ der Proportionalitätsfaktor. Wir berechnen $m$ aus dem Steigungsdreieck. An einem Tag verbraucht Rudi $20$ Tassen Space-Kaffee. Im Steigungsdreieck bedeutet das: eine Einheit nach rechts und $20$ Einheiten nach unten. Die Steigung ist also:

    $m= \frac{-20}{1} = -20$

    Die Funktion des Space-Kaffee-Verbrauchs lautet nun:

    $f(x) = -20 \cdot x$

    Um herauszufinden, wie viel Space-Kaffee Rudi in $80$ Tagen verbraucht, setzen wir $x=80$ in die Verbrauchsfunktion ein und erhalten:

    $f(80) = -20 \cdot 80 = -1 600$

  • Bestimme die gesuchten Funktionswerte.

    Tipps

    Der Asteroidenertrag nach $3$ entspannten Arbeitstagen ist:

    $g(3) = 30$

    Berechne den Funktionswert $f(4)$ durch Einsetzen von $4$ in die Funktion:

    $f(x) = 15 \cdot x$

    Beachte das Vorzeichen der Proportionalitätsfaktoren und der Funktionswerte.

    Lösung

    Wir berechnen die Funktionswerte der drei neuen Funktionen.

    An $2$ bzw. $3$ stressigen Tagen schafft Rudi $30$ bzw. $45$ Asteroiden. Für die stressigen Tage nutzen wir die Funktion $f$:

    • $f(2) = 15 \cdot 2 = 30$
    bzw.
    • $f(3) = 15 \cdot 3 = 45$

    An $4$ entspannten Tagen schafft Rudi immerhin $40$ Asteroiden. Für die entspannten Tagen nutzen wir die Funktion $g$:

    • $g(4) = 10 \cdot 4 =40$

    Und Rudis Space-Kaffee-Verbrauch beträgt jetzt nur noch $-35$ Tassen in fünf Tagen und $-42$ Tassen in sechs Tagen. Für den Kaffeeverbrauch nutzen wir die Funktion $h$:

    • $h(5) =-7 \cdot 5 =-35$
    bzw.
    • $h(6) =-7 \cdot 6 =-42$
  • Ermittle die Funktionsgleichungen zu den gegebenen Funktionsgraphen.

    Tipps

    Beachte das Vorzeichen der Steigung.

    Geraden mit positiver Steigung steigen von links nach rechts an.
    Geraden mit negativer Steigung fallen von links nach rechts ab.

    Je größer der Wert der Steigung ist, desto steiler ist die Gerade.

    Lösung

    Proportionale Funktionen sind von der Form $f(x) =m \cdot x$.

    Hierbei ist $m$ der Proportionalitätsfaktor. Der Graph einer proportionalen Funktion ist eine Gerade durch den Ursprung mit Steigung $m$. Die Steigung, d. h. der Proportionalitätsfaktor, lässt sich aus dem Steigungsdreieck ablesen.

    1. Funktion

    Die Gerade steigt bei einer Einheit nach rechts um $15$ Einheiten nach oben. Die Gleichung lautet daher:

    $f(x) =15 \cdot x$

    2. Funktion

    Die Gerade steigt bei $2$ Einheiten nach rechts um $20$ Einheiten nach oben. Die Gleichung lautet deshalb:

    $f(x) = \frac{20}{2} \cdot x = 10 \cdot x$

    3. Funktion

    Die Gerade fällt bei $3$ Einheiten nach rechts um $21$ Einheiten nach unten. Die Gleichung lautet darum:

    $f(x) = -\frac{21}{3} \cdot x = -7 \cdot x$

    4. Funktion

    Die Gerade fällt bei $25$ Einheiten nach rechts um $250$ Einheiten nach unten. Die Gleichung lautet deswegen:

    $f(x) = -\frac{250}{25} \cdot x = -10 \cdot x$

  • Gib die Eigenschaften proportionaler Funktionen an.

    Tipps

    Zu einer proportionalen Funktion gehört immer ein Proportionalitätsfaktor $m$.

    Der Proportionalitätsfaktor $m$ bestimmt, wie steil die Funktion ansteigt bzw. abfällt.

    Bei einer proportionalen Funktion gilt immer:

    $f(0) = 0$

    Lösung

    Die Funktion einer proportionalen Zuordnung ist durch den Proportionalitätsfaktor $m$ festgelegt. Die Funktion hat folgende Form:

    $f(x) = m \cdot x$

    Ihr Graph ist eine Gerade durch den Ursprung mit Steigung $m$.

    Nun zu den einzelnen Aussagen:

    • Proportionale Funktionen sind von der Form $f(x) = m \cdot x$.
    Diese Aussage ist richtig, denn diese Form stimmt mit der oben dargestellten überein.

    • Der Graph einer proportionalen Funktion ist eine Parabel.
    Diese Aussage ist falsch: Der Graph einer proportionalen Funktion ist eine Gerade, die durch den Ursprung verläuft.

    • Der Graph einer proportionalen Funktion ist eine Gerade, die durch den Ursprung verläuft.
    Diese Aussage ist richtig: Der Graph der proportionalen Funktion $f(x) = m \cdot x$ ist die Gerade durch den Ursprung mit Steigung $m$.

    • Jede Gerade ist der Graph einer proportionalen Funktion.
    Diese Aussage ist falsch. Denn Geraden sind nur dann Graphen einer proportionalen Funktion, wenn sie durch den Ursprung verlaufen.

    • Funktionen der Form $f(x) = m \cdot x + b$ beschreiben proportionale Zuordnungen.
    Diese Aussage ist falsch: Der Graph dieser Funktion ist eine Gerade. Aber sie verläuft nur dann durch den Ursprung, wenn $b=0$.

    • Der Graph einer proportionalen Funktion ist eine Gerade.
    Diese Aussage ist richtig. Graphen proportionaler Funktionen sind nämlich Geraden, die durch den Ursprung verlaufen.

  • Ermittle die Funktionsgleichung und berechne den $x$-Wert.

    Tipps

    Der Graph einer proportionalen Funktion ist eine Gerade durch den Ursprung. Der Proportionalitätsfaktor ist die Steigung der Geraden.

    Die Steigung $m$ einer Geraden berechnet man mit dieser Formel:

    $m = \frac{f(x)}{x}$ für ein $x \neq 0$

    Lösung

    Rudi will ab jetzt $48$ Asteroiden in $3$ Tagen schaffen. Wenn er diese Leistung halten kann, wird der Asteroidenertrag wieder durch eine proportionale Funktion beschrieben, nämlich:

    $f(x) = m \cdot x$

    Wir bestimmen den Proportionalitätsfaktor $m$ mit dieser Formel:

    $m = \frac{48}{3} =16$

    Die proportionale Funktion lautet also:

    $f(x) = 16 \cdot x$

    Wie viele Tage braucht Rudi für $1 200$ Asteroiden? Wir lösen die folgende Gleichung nach $x$ auf:

    $1 200 = f(x) = 16 \cdot x$

    Wir erhalten:

    $x = \frac{1200}{16} =75$

    Rudi braucht demnach $75$ Tage.

30 Tage kostenlos testen
Mit Spaß Noten verbessern
und vollen Zugriff erhalten auf

8.090

sofaheld-Level

6.601

vorgefertigte
Vokabeln

7.922

Lernvideos

36.998

Übungen

34.261

Arbeitsblätter

24h

Hilfe von Lehrer*
innen

laufender Yeti

Inhalte für alle Fächer und Klassenstufen.
Von Expert*innen erstellt und angepasst an die Lehrpläne der Bundesländer.

30 Tage kostenlos testen

Testphase jederzeit online beenden