30 Tage kostenlos testen:
Mehr Spaß am Lernen.

Überzeugen Sie sich von der Qualität unserer Inhalte.

Proportionale Funktionen – Einführung 08:51 min

Textversion des Videos

Transkript Proportionale Funktionen – Einführung

Ricky, der Barmann, verkauft Drinks im Outback ein tolles Geschäft. Sein heutiges Angebot: Für drei Kokosdrinks, verlangt er nur neun Bananen. Sein Kunde, Arwin, plant eine Party, für die er genau 51 Kokosdrinks benötigt. Wie viele Bananen muss Arwin dafür bezahlen? Der Verkauf ist ein proportionaler Zusammenhang - und solche Zusammenhänge, berechnen wir auch mit proportionalen Funktionen. Hierzu erstellen wir zunächst eine Wertetabelle. In die erste Spalte, tragen wir die Anzahl der Kokosdrinks ein und in die zweite Spalte die Anzahl der Bananen. "Wir gehen von 0 und 3 Kokosdrinks aus... und wollen noch die Bananenpreise für einen und zwei Kokosdrinks berechnen." Die bekannten Bananenpreise schreiben wir in die zweite Spalte. Die Kosten für Null Kokosdrinks betragen dabei natürlich Null Bananen. Doch wie kommen wir auf die unbekannten Werte? Wir betrachten zunächst, um welchen Faktor sich der Wert in der ersten Spalte von einem Schritt zum anderen verändert. Hier teilen wir "durch drei"! Der Wert in der zweiten Spalte muss dann ebenfalls, "durch drei" geteilt werden. Ein Kokosdrink kostet also drei Bananen. Für zwei Kokosdrinks nehmen wir in der Spalte "mal zwei" also auch in der anderen "mal zwei" und so erhalten wir den Preis von 6 Bananen! Da wir eine proportionale Funktion aufstellen möchten, ersetzen wir hier unsere beiden Größen mit Variablen: Für die Anzahl der Kokosdrinks wählen wir die Variable x und davon abhängig schreiben wir f von x für die Anzahl der Bananen. Diese Variablen ergänzen wir in der Wertetabelle. Nun wollen wir den Funktionsgraphen zeichnen. Merke dir: Der Graph einer proportionalen Funktion ist immer, eine gerade durch den Koordinatenursprung. Deshalb muss auch unser Graph, eine Gerade sein er stellt alle möglichen Paare von Kokosdrinks und Bananen dar. Wie stark die Gerade steigt, gibt die sogenannte Steigung an. Ausgehend von den Paaren unserer Wertetabelle, wollen wir nun Punkte zur Bestimmung unseres Graphen einzeichnen. Unser erstes Wertepaar (0,0), ist der Koordinatenursprung. Das Wertepaar (3,9), ist DIESER Punkt. Der Punkt (1,3), liegt hier und (2,6), hier. Durch diese Punkte zeichnen wir nun unsere Gerade. Die Steigung dieser Geraden können wir graphisch bestimmen, indem wir die "Anzahl der Schritte nach oben", durch die "Anzahl der Schritte nach rechts" teilen. Wir betrachten hierzu die Punkte " Null-Null" und "Zwei-Sechs". Ausgehend vom ersten Punkt gehen wir zwei Schritte nach rechts und sechs Schritte nach oben. So erhalten wir ein Steigungsdreieck mit einem Seitenverhältnis von "sechs Halben". Die übernehmen wir in unsere Rechnung und das ergibt 3. Ebenso könnten wir auch die Punkte (0,0) und (1,3) betrachten. Dann würden wir einen Schritt nach rechts und drei Schritte nach oben machen und somit eine Steigung von drei einteln also wieder 3 erhalten. Doch wie lesen wir nun die erforderliche Bananenanzahl für 51 Kokosdrinks ab? Jede Funktion kannst du mit der zugehörigen Funktionsgleichung beschreiben. Proportionale Funktionen haben immer die Form "f von x" gleich "m mal x". Den ermittelten Wert für unsere Steigung, also 3 setzen wir nun für m in die Funktionsgleichung ein. Wir haben unsere spezifische Funktionsgleichung gefunden und können damit für jeden x-Wert den zugehörigen Funktionswert "f von x" berechnen. Dabei steht das x immer noch für die Anzahl der Kokosdrinks und das "f von x" für die zugehörige Bananenanzahl. Nun wollen wir für 51 Kokosdrinks den Bananenpreis "f von 51" ermitteln. Setzen wir für x den Wert 51 in die Gleichung ein, erhalten wir 3 mal 51, also 153 Bananen. Das wird wohl eine teure Party für Arwin - gut, dass er vorgesorgt hat. Rickys nächster Kunde ist das Känguru Thorsten. Thorsten möchte gern 16 Melonendrinks haben. zwei Melonendrinks kosten fünf Bananen. Da Thorsten jedoch keine Bananen hat, muss er für seinen Einkauf wohl oder übel Schulden bei Ricky aufnehmen. Auch für diesen Fall erstellen wir uns eine Wertetabelle. Diesmal steht die Variable x, für die Anzahl der Melonendrinks und die abhängige Variable "f von x" wieder für die Bananenanzahl. Diesmal wollen wir aber miteinbeziehen, dass Thorsten sich mit dieser Bananenanzahl verschuldet. Um dies kenntlich zu machen, werden wir alle zugehörigen Werte mit einem negativem Vorzeichen versehen. Für die Anzahl der Melonendrinks tragen wir null, zwei und vier in unsere Tabelle ein. Die Bananen, die Thorsten dafür bezahlen muss, sind für Null Drinks auch Null Bananen! Und für 2 Melonendrinks fünf Bananen! Weil es aber Schulden sind, mit negativem Vorzeichen. Um die Bananenanzahlo für 4 Drinks zu berechnen, schauen wir uns den Faktor auf dieser Seite an: hier nehmen "mal zwei". das machen wir auch auf der anderen Seite und erhalten die zu vier Melonendrinks gehörigen Schulden von "minus zehn" Bananen. In einer dritten Spalte berechnen wir diesmal die Steigung m, indem wir Funktionsgleichung f von x gleich m mal x, nach m umstellen. Null durch Null geht nicht, denn durch null dürfen wir nicht teilen. Aus dieser Zeile erhalten wir den Quotienten "minus 5, geteilt durch 2", also "minus 5 Halbe! Aus dieser Zeile ergibt sich der Quotient "minus 10, geteilt durch 4" gekürzt also ebenfalls "minus 5 Halbe! Somit erhalten wir für alle Wertepaare den gleichen Quotienten. Da Quotientengleichheit vorliegt, haben wir hier auf jeden Fall eine proportinale Zuordnung! Zudem entspricht der Quotient m, der Steigung der zugehörigen proportionalen Funktion! - Diesmal haben wir sie also nicht graphisch über das Steigungsdreieck ermittelt sondern rechnerisch! Aber auch so können wir wieder die Steigung, "minus 5 halbe", in die allgemeine Funktionsgleichung "f von x" gleich "m mal x" einsetzen und erhalten so unsere spezifische Funktionsgleichung. Dabei steht das x hier für die Anzahl der Melonendrinks und das "f von x" für die zugehörige Bananenanzahl. Wir wollen für 16 Melonendrinks den Bananenpreis "f von 16" ermitteln. Dafür setzen wir für x, in die Gleichung den Wert 16 ein, diesen Ausdruck können wir noch kürzen und so erhalten wir "minus 40" Bananen als Ergebnis! - Ob es klug ist, so viele Schulden aufzunehmen? Schauen wir uns der Vollständigkeit halber noch den zugehörigen Funktionsgraphen an. Zum Zeichnen einer Geraden genügen uns bereits zwei Punkte. - Die entnehmen wir der Tabelle! Wir verbinden die Punkte (0,0) und (2, -5) im Koordinatensystem. Es ergibt sich eine fallende Gerade. Merke dir: Eine negative Steigung liefert immer eine fallende Gerade. Lass uns das alles noch kurz zusammenfassen. Eine Darstellungsmöglichkeit, ist eine Wertetabelle zwischen den Werten einer Variablen x, und den davon abhängigen Werten "f von x". Hier kannst du noch den Quotienten der Einträge "f-von-x geteilt duch x" betrachten wenn der Quotient überall gleich ist, handelt es sich um die Wertepaare einer proportionalen Funktion und der Quotient, entspricht der Steigung der Funktion. Den Funktionsgraphen einer proportionalen Funktion kannst du anhand von zwei Punkten einzeichnen und der Graph ist immer eine gerade durch den Koordinatenursprung. Zu jeder Geraden kannst du ein Steigungsdreieck einzeichnen. Das Seitenverhältnis entspricht dabei ebenfalls der Steigung der Funktion. Ist die Steigung positiv, so liegt eine steigende Gerade vor. Bei einer negativen Steigung ist die Gerade fallend. Eine proportionale Funktion, kannst du bei bekannter Steigung m, auch mit der Funktionsgleichung "f von x" gleich "m mal x" darstellen. Dafür setzt du den Wert für m in die allgemeine Gleichung ein und schon hast du deine Funktionsgleichung! So genug von proportionalen Funktionen! Was hat Ricky wohl mit den vielen Bananen vor? Tja das Geschäft hat seinen Proportionen wohl nicht besonders gut getan!

1 Kommentar
  1. Default

    super

    Von Sara A., vor 5 Tagen

Videos im Thema

Proportionale Funktionen: f(x) = m·x (1 Videos)

zur Themenseite