- Mathematik
- Terme und Gleichungen
- Quadratische Gleichungen zeichnerisch lösen
- Quadratische Gleichungen grafisch lösen – Überblick
Quadratische Gleichungen grafisch lösen – Überblick
Erfahre, wie du quadratische Gleichungen auch ohne Taschenrechner grafisch lösen kannst! Dieses Video zeigt dir zwei effektive Methoden, um die Lösungen einer Gleichung anhand ihrer Graphen zu ermitteln. Ob Parabeln oder Geraden, du lernst, wie du ihre Schnittpunkte findest und interpretierst. Interessiert? Finde heraus, wie viele Lösungen es gibt, und übe weiter mit unseren Arbeitsblättern!
die Noten verbessern
In wenigen Schritten dieses Video freischalten & von allen sofatutor-Inhalten profitieren:
in nur 12 Minuten? Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
-
5 Minuten verstehen
Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.
92%der Schüler*innen hilft sofatutor beim selbstständigen Lernen. -
5 Minuten üben
Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.
93%der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert. -
2 Minuten Fragen stellen
Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.
94%der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.
Das Quadratische Gleichungen Graphisch Lösen Quiz besiegt 60% der Teilnehmer! Kannst du es schaffen?
Quiz startenDu musst eingeloggt sein, um bewerten zu können.
Wow, Danke!
Gib uns doch auch deine Bewertung bei Google! Wir freuen uns!
Grundlagen zum Thema Quadratische Gleichungen grafisch lösen – Überblick
Einführung: Was tun ohne Taschenrechner?
Sicherlich weißt du, dass man quadratische Gleichungen rechnerisch lösen kann. Aber was können wir tun, wenn wir keinen Taschenrechner zur Verfügung haben? Ganz einfach: Dann können wir grafische Lösungsverfahren für quadratische Gleichungen anwenden.
Quadratische Gleichungen
Wir betrachten als Beispiel diese quadratische Gleichung:
$2 \cdot x^{2} +x = 3 \cdot x + 1,5$
Im Folgenden lernen wir zwei Methoden kennen, mit denen wir die Lösungen der Gleichung grafisch bestimmen können.
Quadratische Gleichungen grafisch lösen – Methode 1
Beispiel:
Bei der ersten Methode stellen wir unsere Gleichung zunächst so um, dass auf einer Seite der Gleichung eine Null steht. Dazu subtrahieren wir zuerst auf beiden Seiten der Gleichung $3x$. Anschließend subtrahieren wir $1,5$ und erhalten somit:
$2 \cdot x^{2} -2\cdot x -1,5=0$
Wir können diese Gleichung lösen, indem wir die Nullstellen der Funktion
$x$ | $-1$ | $0$ | $1$ | $2$ |
$y$ | $2,5$ | $-1,5$ | $-1,5$ | $2,5$ |
Mithilfe dieser Wertetabelle können wir die berechneten Wertepaare in ein Koordinatensystem eintragen und die Parabel zeichnen:
Unserem Graphen können wir die beiden Nullstellen $-0,5$ und $1,5$ entnehmen. Die Lösung der ursprünglichen Gleichung lautet:
$\mathbb{L} = \lbrace -0,5; 1,5 \rbrace$
Mögliche Fälle beim grafischen Lösungsverfahren – Methode 1:
- Hat die Parabel zwei Nullstellen, so hat die Gleichung zwei Lösungen.
- Hat die Parabel eine Nullstelle, so hat die Gleichung eine Lösung.
- Hat die Parabel keine Nullstelle, so hat die Gleichung keine Lösung.
Quadratische Gleichungen grafisch lösen – Methode 2
Beispiel: Wir können quadratische Gleichungen auch zeichnerisch lösen, indem wir die Gleichung so umformen, dass $x^{2}$ allein auf einer Seite der Gleichung steht. Dazu subtrahieren wir zuerst auf beiden Seiten der Gleichung $x$ und dividieren dann durch $2$. Somit erhalten wir:
$x^{2}=x+0,75$
Die grafische Lösung dieser Gleichung sind die Schnittpunkte der beiden Funktionen
Der Graph der Funktion $f(x)=x^{2}$ ist die Normalparabel. Sie hat ihren Scheitelpunkt im Koordinatenursprung. Wir können sie mit einer Parabelschablone zeichnen. Der Graph der linearen Funktion $g(x)$ ist eine Gerade mit der Steigung $1$ und dem $y$-Achsenabschnitt $0,75$.
Wenn wir die Normalparabel und die Gerade gezeichnet haben, können wir die $x$-Werte ihrer Schnittpunkte ablesen. Sie lauten: $-0,5$ und $1,5$.
Dies sind die Lösungen der ursprünglichen Gleichung:
$\mathbb{L} = \lbrace -0,5; 1,5 \rbrace$
Mögliche Fälle beim grafischen Lösungsverfahren – Methode 2:
- Schneiden sich die Parabel und die Gerade in zwei Punkten, so hat die Gleichung zwei Lösungen.
- Schneiden sich die Parabel und die Gerade in einem Punkt, so hat die Gleichung eine Lösung.
- Schneiden sich die Parabel und die Gerade gar nicht, so hat die Gleichung keine Lösung .
Zusammenfassung: quadratische Gleichungen grafisch lösen
In diesem Video zum grafischen Lösungsverfahren quadratischer Gleichungen wird das grafische Lösen quadratischer Gleichungen einfach erklärt. Dabei werden an einem Beispiel zwei mögliche Methoden erläutert, mit denen man eine quadratische Gleichung zeichnerisch lösen kann. Außerdem wird jeweils zusammengefasst, woran man beim grafischen Lösen erkennt, wie viele Lösungen die Gleichung hat.
Wenn du mithilfe weiterer Aufgaben und Übungen quadratische Gleichungen selbst grafisch lösen möchtest, findest du hier bei sofatutor ein Arbeitsblatt zum grafischen Lösen von quadratischen Gleichungen.
1.215.161 Schülerinnen und Schüler haben bereits unsere Übungen absolviert. Direktes Feedback, klare Fortschritte: Finde jetzt heraus, wo du stehst!
Jetzt registrieren und vollen Zugriff auf alle Funktionen erhalten!
30 Tage kostenlos testenTranskript Quadratische Gleichungen grafisch lösen – Überblick
Hast du dich schon mal gefragt, wie man solche Gleichungen lösen konnte bevor es Taschenrechner gab? Selbst Leander, der Neanderthaler, hat alles, was man dazu braucht. Denn er überlegt sich jetzt, wie man quadratische Gleichungen graphisch löst. Um eine solche Gleichung zeichnerisch zu lösen, können wir zwei Methoden anwenden. Bei der ersten Methode stellen wir unsere Gleichung zunächst so um, dass auf einer Seite der Gleichung eine Null steht. Wenn wir die Nullstellen einer quadratischen Funktion bestimmen wollen, müssen wir genau so eine Gleichung lösen! Also bestimmen wir doch einfach zeichnerisch die Nullstellen dieser quadratischen Funktion. Dafür erstellen wir zuerst die Wertetabelle, und zeichnen dann den dazugehörigen Funktionsgraphen. Für die Wertetabelle setzen wir die x-Werte -1, 0, 1 und 2 in unsere Funktionsgleichung ein und berechnen die zugehörigen Funktionswerte f(x). Die lauten 2,5, -1,5, -1,5 und 2,5. Mithilfe unserer Wertetabelle können wir nun die berechneten Wertepaare in ein Koordinatensystem eintragen und unseren Funktionsgraphen zeichnen. Unserem Graphen können wir die beiden Nullstellen -0,5 und 1,5 entnehmen. Und damit haben wir unsere ursprüngliche Gleichung gelöst! Ihre Lösungsmenge besteht aus den beiden Nullstellen. Aber was passiert, wenn die resultierende Parabel gar keine Nullstellen hat? In so einem Fall, hat die entsprechende Gleichung eben keine Lösung. Denn merke dir: eine quadratische Gleichung kann keine, eine oder zwei Lösungen besitzen. Die zweite Methode eine quadratische Gleichung zeichnerisch zu lösen, besteht darin, die Gleichung so umzuformen, dass das x2 alleine auf einer Seite der Gleichung steht. Dazu isolieren wir zuerst 2x2 und teilen dann auf beiden Seiten durch 2. Wie können wir das in ein graphisches Problem übersetzen? Durch Gleichsetzen bestimmst du den Schnittpunkt der beiden Funktionen. f(x) = x2 und g(x) = x + 0,75. Die Funktion f(x) ist quadratisch, und g(x) ist eine lineare Funktion. Wir zeichnen die Graphen dieser beiden Funktionen in ein gemeinsames Koordinatensystem. Der Graph der Funktion f(x) = x2 ist die Normalparabel. Die hat ihren Scheitelpunkt im Koordinatenursprung, und du kannst sie mit einer Parabelschablone zeichnen – wenn du eine hast. Der Graph der linearen Funktion g(x)ist eine Gerade mit der Steigung 1 und dem y-Achsenabschnitt 0,75. Wenn wir beide Graphen gezeichnet haben, können wir die x-Werte ihrer Schnittpunkte ablesen. Sie lauten: -0,5 und 1,5 und entsprechen den Lösungen unserer quadratischen Gleichung. Aber was wäre, wenn die beiden Graphen sich nicht schneiden würden? Wie bei der ersten Methode hätten wir dann den Fall, dass unsere quadratische Gleichung keine Lösung besitzt. Und natürlich könnten die beiden Graphen sich auch in nur einem Punkt schneiden, der wäre dann auch die einzige Lösung der Gleichung. Zum Lösen einer quadratischen Gleichung haben wir zwei graphische Verfahren benutzt. Lass uns das Vorgehen bei diesen beiden Methoden kurz zusammenfassen. Bei der ersten Methode, formst du die quadratische Gleichung so um, dass auf einer Seite der Gleichung eine 0 steht. Was auf der anderen Seite steht, kannst du als quadratische Funktion auffassen. Für die zeichnest du dann den Funktionsgraphen, am besten mit Hilfe einer Wertetabelle. Jetzt musst du nur noch die Nullstellen ablesen: sie sind die Lösungen der quadratischen Gleichung. Bei der zweiten Methode formst du die quadratische Gleichung so um, dass auf einer Seite der Gleichung x2 steht. Das entspricht der Normalparabel. Auf der anderen Seite der Gleichung bleibt dann ein Ausdruck stehen, den du als lineare Funktion verwenden kannst. Nun zeichnest du in ein gemeinsames Koordinatensystem die Normalparabel und den Graphen dieser linearen Funktion. Abschließend liest du die x-Werte der Schnittpunkte beider Graphen ab: die sind wieder die Lösungen der quadratischen Gleichung. Dieses schlaue Verfahren muss Leander unbedingt an seine Nachfahren weitergeben! In diesen Felsen eingemeißelt wird es für immer lesbar sein. Naja, dann werden seine Nachfahren wohl selber auf diese schlaue Idee kommen müssen.
Quadratische Gleichungen grafisch lösen – Überblick Übung
-
Beschreibe das Vorgehen beim graphischen Lösen einer quadratischen Gleichung.
TippsUm eine Wertetabelle zu erstellen, setzt man zum Beispiel die $x$-Werte $-1,0,1$ und $2$ in die Funktionsgleichung der jeweiligen Funktion ein.
Schneidet der Graph einer quadratischen Funktion die $x$-Achse nicht, so besitzt die Funktion keine Nullstellen.
LösungUm eine quadratische Gleichung graphisch zu lösen, stellt man die Gleichung so um, dass auf einer Seite null steht. Die entstandene Gleichung kennt man von der Nullstellenbestimmung einer quadratischen Funktion.
Für die Gleichung $2x^2+x=3x+1,5$ bedeutet das zum Beispiel $2x^2 +x-3x-1 =0$ bzw. vereinfacht $2x^2-2x-1,5 =0$.
Der Term $2x^2-2x-1,5$ kann nun als quadratische Funktion der Form $f(x)=2x^2-2x-1,5$ aufgefasst werden.
Um den Graph dieser Funktion zu zeichnen, erstellt man als Nächstes eine Wertetabelle. Dafür können wir zum Beispiel die $x$-Werte $-1,0,1$ und $2$ in die Funktionsgleichung einsetzen.
$\begin{array}{l|c|c|c|c} x & -1& 0& 1 & 2 \\ \hline f(x) & 2,5 & -1,5 & -1,5 & 2,5\\ \end{array}$
Nun können wir die Punkte in ein Koordinatensystem eintragen und den Graphen der Funktion, also in diesem Fall $f(x)=2x^2-2x-1,5$, zeichnen. Die Nullstellen lassen sich als Schnittpunkte mit der $x$-Achse ablesen. Hier sind das die Nullstellen $-0,5$ und $1,5$.
-
Bestimme graphisch die Lösung der quadratischen Gleichung.
TippsIn der Gleichung $2x^2+2x=4$ kann man $x^2$ isolieren, indem man zunächst $2x$ auf beiden Seiten abzieht und $2x^2=4-2x$ erhält.
Teilt man dann noch durch $2$, so erhält man $x^2=2-x$.Eine lineare Gleichung der Form $y=x+0,75$ hat den $y$-Achsenabschnitt bei $0,75$.
LösungWir wollen die quadratische Gleichung $2x^2+x=3x+1,5$ graphisch lösen.
Dafür wollen wir die Gleichung so umstellen, dass $2x^2$ auf einer Seite isoliert steht. Dazu subtrahieren wir zunächst $x$ auf beiden Seiten und erhalten $2x^2=2x+1,5$.
Um auf der linken Seite $x^2$ zu erhalten, teilen wir beide Seiten durch $2$ und erhalten $x^2=x+0,75$.
Nun können wir die linke Seite der Gleichung als quadratische Funktion der Form $f(x)=x^2$, also als Gleichung der Normalparabel, auffassen. Die rechte Seite der Gleichung kann als lineare Funktion der Form $g(x)=x+0,75$ aufgefasst werden.
Die Graph zu $f$ ist die Normalparabel und damit der schwarze Graph. Der Graph der linearen Funktion $g$ hat den $y$-Achsenabschnitt $0,75$. Daher kann es sich hierbei nur um den roten Graphen handeln.
Im obigen Bild können wir nun die Schnittpunkte der Normalparabel und der roten Geraden ablesen. Diese Schnittpunkte sind die Lösung der quadratischen Gleichung und sind gegeben durch $x_1 =-0,5$ und $x_2=1,5$.
-
Ermittle die Lösungen der gegebenen quadratischen Gleichungen.
TippsForme die Gleichung zunächst so um, dass $0$ auf einer Seite der Gleichung steht. Die andere Seite der Gleichung kann dann als quadratische Funktion identifiziert werden.
Ausgehend von der quadratischen Funktion, kannst du eine Wertetabelle erstellen, anschließend den Graphen zeichnen und die Nullstellen ablesen.
LösungUm die quadratischen Gleichungen graphisch zu lösen, gehen wir nach folgendem Schema vor:
- Umstellen der Gleichung, sodass $0$ auf einer Seite der Gleichung steht
- Auffassen der anderen Seite der Gleichung als quadratische Funktion
- Zeichnen des Graphen der Funktion anhand der Wertetabelle
- Ablesen der Nullstellen des Graphen, da diese die Lösungen der ursprünglichen Gleichung bilden
Wir subtrahieren $3x$ und $1$ auf beiden Seiten und erhalten die Gleichung $x^2-1=0$.
Die linke Seite lässt sich als quadratische Funktion der Form $f(x)=x^2-1$ auffassen.
Wir erstellen eine Wertetabelle:$\begin{array}{l|c|c|c|c|c} x & -2& -1& 0& 1 & 2 \\ \hline f(x) & 3 & 0 & -1 & 0 & 3 \end{array}$
Wenn wir den Graphen zu der Wertetabelle zeichnen, stellen wir fest, dass die Nullstellen der Funktion und damit die Lösungen der anfänglichen Gleichung gegeben sind durch $-1$ und $1$.
Zur Gleichung $2x+1=-x^2+1$
Wir subtrahieren $1$ auf beiden Seiten, addieren $x^2$ und erhalten die Gleichung $x^2+2x=0$.
Die linke Seite lässt sich als quadratische Funktion der Form $f(x)=x^2+2x$ auffassen.
Wir erstellen eine Wertetabelle:$\begin{array}{l|c|c|c|c|c} x & -2& -1& 0& 1 & 2 \\ \hline f(x) & 0 & -1 & 0 & 3 & 8 \end{array}$
Wenn wir den Graphen zu der Wertetabelle zeichnen, stellen wir fest, dass die Nullstellen der Funktion und damit die Lösungen der anfänglichen Gleichung gegeben sind durch $-2$ und $0$.
Zur Gleichung $2x^2-2x+1=x^2+0,5x$
Wir subtrahieren $x^2$ und $0,5x$ auf beiden Seiten und erhalten die Gleichung $x^2-2,5x+1=0$.
Die linke Seite lässt sich als quadratische Funktion der Form $f(x)= x^2-2,5x+1$ auffassen.
Wir erstellen eine Wertetabelle:$\begin{array}{l|c|c|c|c|c} x & -2& -1& 0& 1 & 2 \\ \hline f(x) & 10 & 4,5 & 1 & -0,5 & 0 \end{array}$
Wenn wir den Graphen zu der Wertetabelle zeichnen, stellen wir fest, dass die Nullstellen der Funktion und damit die Lösungen der anfänglichen Gleichung gegeben sind durch $0,5$ und $2$.
Zur Gleichung $-x+2x^2=-2x+3$
Wir subtrahieren $3$ auf beiden Seiten, addieren $2x$ und erhalten die Gleichung $2x^2+x-3=0$.
Die linke Seite lässt sich als quadratische Funktion der Form $f(x)= 2x^2+x-3$ auffassen.
Wir erstellen eine Wertetabelle:$\begin{array}{l|c|c|c|c|c} x & -2& -1& 0& 1 & 2 \\ \hline f(x) & 3 & -2 & -3 & 0 & 7 \end{array}$
Wenn wir den Graphen zu der Wertetabelle zeichnen, stellen wir fest, dass die Nullstellen der Funktion und damit die Lösungen der anfänglichen Gleichung gegeben sind durch $-1,5$ und $1$.
-
Bestimme die graphische Lösung der gegebenen quadratischen Gleichungen.
TippsLöse die quadratischen Gleichungen, indem du $x^2$ auf einer Seite der Gleichung isolierst. Dann kannst du beide Seiten der Gleichungen als Funktionen auffassen, deren Graphen zum einen eine Normalparabel und zum anderen eine Gerade sind.
Eine Gerade der Form $y=4x+2$ hat den $y$-Achsenabschnitt $2$ und die positive Steigung $4$.
LösungZur Gleichung $x^2+x=3x+1$
Um die Gleichung $x^2+x=3x+1$ nach $x^2$ umzustellen, subtrahieren wir $x$ auf beiden Seiten der Gleichung und erhalten $x^2=2x+1$.
Wir können die Seiten als die quadratische Funktion $f(x)=x^2$ und $g(x)=2x+1$ auffassen.
Dabei ist der Graph von $f$ die Normalparabel und der Graph von $g$ ist gegeben durch eine Gerade mit $y$-Achsenabschnitt $1$ und Steigung $2$. Daher kommen nur die grünen Graphen infrage.Zur Gleichung $0,5x^2=-1,5x+2-0,5x^2$
Um die Gleichung $0,5x^2=-1,5x+2-0,5x^2$ nach $x^2$ umzustellen, addieren wir $0,5x^2$ auf beiden Seiten der Gleichung und erhalten $x^2=-1,5x+2$.
Wir können die Seiten als die quadratische Funktion $f(x)=x^2$ und $g(x)=-1,5x+2$ auffassen.
Dabei ist der Graph von $f$ die Normalparabel und der Graph von $g$ ist gegeben durch eine Gerade mit $y$-Achsenabschnitt $2$ und Steigung $-1,5$. Daher kommen nur die orangen Graphen infrage.Zur Gleichung $x^2-4+3x=-4-4x$
Um die Gleichung $x^2-4+3x=-4-4x$ umzustellen, addieren wir $4$ auf beiden Seiten der Gleichung und erhalten $x^2+3x=-4x$. Zusätzlich subtrahieren wir $3x$ auf beiden Seiten der Gleichung und erhalten $x^2=-7x$.
Wir können die Seiten als die quadratische Funktion $f(x)=x^2$ und $g(x)=-7x$ auffassen.
Dabei ist der Graph von $f$ die Normalparabel und der Graph von $g$ ist gegeben durch eine Gerade mit $y$-Achsenabschnitt $0$ und Steigung $-7$. Sie verläuft also durch den Ursprung und ist sehr steil. Daher kommen nur die blauen Graphen infrage.Zur Gleichung $3x^2+2-x=0,5x-1$
Um die Gleichung $3x^2+2-x=0,5x-1$ umzustellen, addieren wir $x$ auf beiden Seiten der Gleichung und erhalten $3x^2+2=1,5x-1$. Als Nächstes subtrahieren wir $2$ auf beiden Seiten der Gleichung und erhalten $3x^2=1,5x-3$. Nun müssen wir nur noch durch $3$ teilen, um $x^2$ zu isolieren: $x^2=0,5x-1$.
Wir können die Seiten als die quadratische Funktion $f(x)=x^2$ und $g(x)=0,5x-1$ auffassen.
Dabei ist der Graph von $f$ die Normalparabel und der Graph von $g$ ist gegeben durch eine Gerade mit $y$-Achsenabschnitt $-1$ und Steigung $0,5$. Daher kommen nur die gelben Graphen infrage. -
Gib die Nullstellen der abgebildeten quadratischen Funktionen an.
TippsEine Nullstelle ist der $x$-Wert des Schnittpunktes eines Graphen mit der $x$-Achse.
Der grüne Graph besitzt nur eine Nullstelle.
LösungDie Nullstellen sind gegeben durch die $x$-Werte der Schnittpunkte der Graphen mit der $x$-Achse:
Der blaue Graph schneidet die $x$-Achse in den Punkten $(-2,5|0)$ und $(-0,5|0)$. Daher sind die Nullstellen gegeben durch $-2,5$ und $-0,5$.
Der gelbe Graph schneidet die $x$-Achse in den Punkten $(-1|0)$ und $(2|0)$. Daher sind die Nullstellen gegeben durch $-1$ und $2$.
Der grüne Graph schneidet die $x$-Achse ausschließlich im Punkt $(1|0)$. Daher ist die einzige Nullstellen gegeben durch $1$.
-
Ermittle die Lösung der gegebenen quadratischen Gleichung in Abhängigkeit vom Parameter $a$.
TippsWenn du die Normalparabel und die Gerade gezeichnet hast, bedeuten zwei Schnittpunkte, dass es zwei Lösungen gibt, und ein Schnittpunkt bedeutet, dass es eine Lösung gibt. Schneidet die Gerade die Normalparabel nicht, so gibt es keine Lösung für die quadratische Gleichung.
LösungWir gehen nach folgendem Schema vor:
- Ersetzen des Parameters $a$ durch $0,4$ oder $8$
- Isolierung von $x^2$ auf einer Seite der Gleichung
- Identifizierung der Funktionen $f(x)=x^2$ und einer linearen Funktion $g(x)$
- Zeichnen der beiden Funktionen in einem Koordinatensystem
- Ablesen der Anzahl der Lösungen
Zu $a=0$
Die quadratische Gleichung wird zu $2x^2-x=x^2+3x$. Subtrahieren wir $x^2$ auf beiden Seiten und addieren $x$, so erhalten wir $x^2=4x$.
Wir können die linke Seite als quadratische Funktion der Form $f(x)=x^2$ und die rechte Seite als lineare Funktion der Form $g(x)=4x$ identifizieren.
Der Graph der Funktion $f$ ist die Normalparabel. Der Graph der Funktion $g$ ist eine Gerade mit $y$-Achsenabschnitt $0$ und Steigung $4$. Sie schneidet die Parabel $2$-mal. Daher hat die ursprüngliche quadratische Gleichung für $a=0$ zwei Lösungen.
Zu $a=4$
Die quadratische Gleichung wird zu $2x^2-x+8=x^2+3x+4$. Subtrahieren wir $x^2$ und $8$ auf beiden Seiten und addieren $x$, so erhalten wir $x^2=4x-4$.
Wir können die linke Seite als quadratische Funktion der Form $f(x)=x^2$ und die rechte Seite als lineare Funktion der Form $g(x)=4x-4$ identifizieren.
Der Graph der Funktion $f$ ist die Normalparabel. Der Graph der Funktion $g$ ist eine Gerade mit $y$-Achsenabschnitt $-4$ und Steigung $4$. Sie schneidet die Parabel genau $1$-mal. Daher hat die ursprüngliche quadratische Gleichung für $a=4$ genau eine Lösung.
Zu $a=8$
Die quadratische Gleichung wird zu $2x^2-x+16=x^2+3x+8$. Subtrahieren wir $x^2$ und $16$ auf beiden Seiten und addieren $x$, so erhalten wir $x^2=4x-8$.
Wir können die linke Seite als quadratische Funktion der Form $f(x)=x^2$ und die rechte Seite als lineare Funktion der Form $g(x)=4x-8$ identifizieren.
Der Graph der Funktion $f$ ist die Normalparabel. Der Graph der Funktion $g$ ist eine Gerade mit $y$-Achsenabschnitt $-8$ und Steigung $4$. Sie schneidet die Parabel nicht. Daher hat die ursprüngliche quadratische Gleichung für $a=8$ keine Lösung.
8.807
sofaheld-Level
6.601
vorgefertigte
Vokabeln
7.860
Lernvideos
37.816
Übungen
33.942
Arbeitsblätter
24h
Hilfe von Lehrkräften
Inhalte für alle Fächer und Klassenstufen.
Von Expert*innen erstellt und angepasst an die Lehrpläne der Bundesländer.
Testphase jederzeit online beenden
Beliebteste Themen in Mathematik
- Römische Zahlen
- Prozentrechnung
- Primzahlen
- Geometrische Lagebeziehungen
- Was ist eine Ecke?
- Rechteck
- Was ist eine Gleichung?
- Pq-Formel
- Binomische Formeln
- Trapez
- Volumen Zylinder
- Umfang Kreis
- Quadrat
- Division
- Raute
- Parallelogramm
- Polynomdivision
- Was Ist Eine Viertelstunde
- Prisma
- Mitternachtsformel
- Äquivalenzumformung
- Grundrechenarten Begriffe
- Größer Kleiner Zeichen
- Dreiecksarten
- Aufbau von Dreiecken
- Quader
- Satz Des Pythagoras
- Dreieck Grundschule
- Erste Binomische Formel
- Kreis
- Trigonometrie
- Trigonometrische Funktionen
- Standardabweichung
- Flächeninhalt
- Volumen Kugel
- Zahlen In Worten Schreiben
- Meter
- Orthogonalität
- Schriftlich Multiplizieren
- Brüche gleichnamig machen
- Brüche Multiplizieren
- Potenzgesetze
- Distributivgesetz
- Flächeninhalt Dreieck
- Rationale Zahlen
- Volumen Berechnen
- Brüche Addieren
- Kongruenz
- Exponentialfunktion
- Exponentialfunktion Beispiel
Tolle Videos Team Digital. ich hab es verstanden
Ich habs sehr eiinfach verstanden
Echt jetzt ????????
Wie einfach ist es??
Boar ej TOLLL Mann
Echt gutes Video! Richtig gut und vor allem anschaulich erklärt!
Tolles Video