Punktspiegelung
Erfahre, wie man eine Figur an einem Punkt spiegelt und warum sie dann punktsymmetrisch wird. Was ist ein Spiegelzentrum und wie erkennt man eine Punktspiegelung? Schritt-für-Schritt-Anleitung mit Beispielen und Übungsaufgaben. Interesse geweckt? Entdecke hier noch mehr zur Punktspiegelung!
in nur 12 Minuten? Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
-
5 Minuten verstehen
Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.
92%der Schüler*innen hilft sofatutor beim selbstständigen Lernen. -
5 Minuten üben
Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.
93%der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert. -
2 Minuten Fragen stellen
Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.
94%der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.
Punktspiegelung Übung
-
Gib die Eigenschaften von Punktspiegelungen an.
TippsBei der Konstruktion von Spiegelbildern wird jeder Eckpunkt einzeln gespiegelt. Die Bildpunkte werden dann genau wie die Ursprungsfigur verbunden.
So sieht eine punktgespiegelte Figur aus.
LösungDiese Aussagen sind wahr:
Die folgenden drei Aussagen beschreiben Eigenschaften oder das übliche Verfahren beim Durchführen von Punktspiegelungen.
- Bei einer Punktspiegelung dreht man eine Figur um $180^{\circ}$ um das Spiegelzentrum.
- Ein durch Spiegelung gefundener Punkt heißt Bildpunkt.
- Einen Bildpunkt bezeichnet man üblicherweise mit dem Buchstaben des Ursprungspunkts und fügt einen Strich an. Aus $A$ wird demnach $A'$.
Diese Aussagen sind falsch:
- Bei der Konstruktion einer Punktspiegelung spiegelt man die komplette Figur auf einmal.
- Das Spiegelzentrum ist immer ein Punkt der ursprünglichen Figur.
-
Beschreibe, wie man ein Bild an einem Punkt spiegelt.
TippsUm eine Figur zu spiegeln, müssen zunächst alle Eckpunkte der Figur einzeln gespiegelt werden.
Zum Schluss werden die gespiegelten Eckpunkte verbunden.
LösungUm eine Figur zu spiegeln, müssen zunächst alle Eckpunkte der Figur einzeln gespiegelt werden. Die Punktspiegelung einzelner Punkte funktioniert so:
- Zuerst zeichnest du einen Hilfskreis um das Spiegelzentrum $P$, der durch den ersten Ursprungspunkt $A$ geht.
- Dann zeichnest du eine Hilfsgerade durch das Spiegelzentrum $P$ und den ersten Punkt $A$.
- Der Schnittpunkt von Gerade und Kreis ist der Bildpunkt $A'$.
- Bei der Punktspiegelung aller anderen Eckpunkte der Ursprungsfigur gehst du auch so vor.
- Schließlich verbindest du alle Bildpunkte entsprechend der Ursprungsfigur und erhältst die Bildfigur.
-
Wende das Konstruktionsverfahren an.
TippsDie fertige Punktspiegelung sieht so aus.
Der Hilfskreis wird um das Spiegelzentrum gezeichnet.
LösungDie Konstruktion funktioniert folgendermaßen:
- Um den ersten Punkt $A(3\vert2)$ zu spiegeln, sticht sie ihren Zirkel in den Koordinatenursprung ein. Dann zeichnet sie einen Hilfskreis durch den Punkt $A$.
- Im Anschluss legt sie ihr Lineal an den Koordinatenursprung und den Punkt $A$ an. Durch diese beiden Punkte zeichnet sie eine Hilfsgerade, die den Hilfskreis schneidet.
- Der Schnittpunkt der Hilfsgeraden mit dem Hilfskreis ist der Bildpunkt $A'$ und liegt bei $(-3\vert-2)$.
- Die anderen Bildpunkte konstruiert Marie auch so. Damit erhält sie im Koordinatensystem die Punkte $B'(-2\vert-5)$ und $C'(-7\vert-4)$.
- Im Anschluss verbindet sie alle Bildpunkte entsprechend der Ursprungsfigur miteinander und erhält so die Bildfigur.
-
Bestimme das Spiegelzentrum.
TippsMit einem Hilfskreis und einer Geraden kannst du die Punkte einzeln spiegeln. Hast du alle gespiegelt, kannst du sie zu einer geometrischen Figur verbinden.
Die richtigen Spiegelzentren kannst du herausfinden, indem du die Bilder nacheinander an den verschiedenen möglichen Spiegelzentren spiegelst. Dann überprüfst du, ob deine Bildfigur mit der gegebenen Bildfigur übereinstimmt.
LösungDie richtigen Spiegelzentren kannst du herausfinden, indem du die Bilder nacheinander an den verschiedenen möglichen Spiegelzentren spiegelst. Dann überprüfst du, ob deine Bildfigur mit der gegebenen Bildfigur übereinstimmt. Die Konstruktion funktioniert folgendermaßen:
- Um den ersten Punkt $A$ zu spiegeln, stichst du den Zirkel in das Spiegelzentrum ein. Dann zeichnest du einen Hilfskreis durch den Eckpunkt $A$.
- Im Anschluss legst du dein Lineal an das Spiegelzentrum und den Punkt $A$ an. Durch diese beiden Punkte zeichnest du eine Hilfsgerade, die den Hilfskreis schneidet.
- Der Schnittpunkt der Hilfsgeraden mit dem Hilfskreis ist der Bildpunkt $A'$.
- Die anderen Bildpunkte konstruierst du auch so und verbindest sie im Anschluss entsprechend der Ursprungsfigur zu der Bildfigur.
- 1. Bild: $P$
- 2. Bild: $R$
- 3. Bild: $Q$
- 4. Bild: $S$
-
Bestimme die Bezeichnungen der Ursprungs- und Bildfigur.
TippsBildpunkte werden mit dem Buchstaben des Ursprungspunkts und einem Strich gekennzeichnet. Aus $A$ wird demnach $A'$.
Die Bildpunkte kannst du entsprechend der Ursprungsfigur zur Bildfigur verbinden.
LösungDie Zuordnung kann folgendermaßen vorgenommen werden:
- Ein Punkt der ursprünglichen Figur wird Ursprungspunkt genannt. Also ist $B$ ein Ursprungspunkt.
- Die komplette ursprüngliche Figur wird Ursprungsfigur genannt.
- Ein Punkt der gespiegelten Figur wird Bildpunkt genannt. Also ist $B'$ ein Bildpunkt.
- Die komplette gespiegelte Figur wird Bildfigur genannt.
- Der Punkt, an dem die Figur gespiegelt wird, heißt Spiegelzentrum.
- Der Kreis, der für die Konstruktion nötig ist, heißt Hilfskreis.
- Die Gerade, die für die Konstruktion nötig ist, heißt Hilfsgerade.
-
Erläutere, warum das Konstruktionsverfahren funktioniert.
TippsAlle Punkte auf dem Kreisrand haben den gleichen Abstand zum Kreismittelpunkt. Hier wurde ein Kreis um das Spiegelzentrum gezeichnet.
Eine Gerade spannt genau einen Winkel von $180^{\circ}$ auf.
LösungDiese Aussagen sind richtig:
- Da bei einer Punktspiegelung der Ursprungspunkt um $180^{\circ}$ um das Spiegelzentrum gedreht wird, müssen der Ursprungspunkt und der zugehörige Bildpunkt auf einer Geraden durch das Spiegelzentrum liegen.
- Der Bildpunkt ist der Schnittpunkt zwischen Hilfsgerade und Hilfskreis, da hier zwei Bedingungen erfüllt sind: Ursprungs- und Bildpunkt müssen den gleichen Abstand zum Spiegelzentrum haben. Spiegelzentrum, Ursprungspunkt und zugehöriger Bildpunkt müssen auf einer Geraden liegen.
- Jeder Ursprungspunkt ist exakt so weit vom Spiegelzentrum entfernt wie sein Bildpunkt. Deshalb müssen Ursprungspunkt und zugehöriger Bildpunkt auf einem Kreis um das Spiegelzentrum liegen.
Diese Aussagen sind falsch:
- Jeder Ursprungspunkt ist genauso weit vom Spiegelzentrum entfernt wie sein Bildpunkt. Deshalb müssen Ursprungs- und Bildpunkt auf einer Gerade liegen.
- Der Abstand zwischen Ursprungspunkt und Spiegelzentrum sowie zwischen zugehörigem Bildpunkt und Spiegelzentrum kann auch verschieden sein.
9.360
sofaheld-Level
6.600
vorgefertigte
Vokabeln
8.212
Lernvideos
38.688
Übungen
33.496
Arbeitsblätter
24h
Hilfe von Lehrkräften

Inhalte für alle Fächer und Klassenstufen.
Von Expert*innen erstellt und angepasst an die Lehrpläne der Bundesländer.
Testphase jederzeit online beenden
Beliebteste Themen in Mathematik
- Römische Zahlen
- Prozentrechnung
- Prozentrechnung - Übungen
- Primzahlen
- Geometrische Lagebezeichnungen
- Was ist eine Ecke?
- Rechteck
- Was ist eine Gleichung?
- Pq-Formel
- Binomische Formeln
- Trapez
- Flächeninhalt – Übungen
- Volumen Zylinder
- Potenzgesetze – Übungen
- Umfang Kreis
- Zehnerzahlen vergleichen und ordnen – Übungen
- Quadrat
- Zahlen sortieren – Übungen
- Division
- Binomische Formeln – Übungen
- Raute
- Brüche umwandeln Übungen
- Parallelogramm
- Ungleichungen – Übungen
- Polynomdivision
- Zahlen bis 1000 ordnen – Übungen
- Was Ist Eine Viertelstunde
- Terme mit Variablen aufstellen – Übungen
- Prisma
- Die Grundrechenarten – Übungen
- Mitternachtsformel
- Äquivalenzumformung
- Grundrechenarten Begriffe
- Größer Kleiner Zeichen
- Dreiecksarten
- Punkt-vor-Strich und Klammern-zuerst-Regel
- Aufbau von Dreiecken
- Quader
- Zahlen runden – Übungen
- Satz Des Pythagoras
- Ziffern und Stellenwerte – Übungen
- Dreieck Grundschule
- Koordinatensystem – Übungen
- Erste Binomische Formel
- Kreis
- Trigonometrie
- Trigonometrische Funktionen
- Standardabweichung
- Quadratische Gleichungen – Übungen
- Flächeninhalt