30 Tage kostenlos testen:
Mehr Spaß am Lernen.

Überzeugen Sie sich von der Qualität unserer Inhalte.

Punktspiegelung 06:00 min

Textversion des Videos

Transkript Punktspiegelung

Ein Bube ist schon ein paar Punkte wert, Eiskristalle gibt es am Gefrierpunkt, mit dem Helikopter kommst du überall pünktlich hin und sein Rotor rotiert rasend um diesen Mittelpunkt. Was haben die Spielkarte, der Eiskristall und der Rotor also gemeinsam? Sie sind alle punktsymmetrisch! Und was das genau heißt, lernen wir durch die Punktspiegelung! Los geht's – schauen wir uns eines der Rotorblätter mal genauer an. Von oben betrachtet können wir das Rotorblatt als eine geometrische Figur darstellen. Die vier Ecken nennen wir A, B, C und D. Wir wollen die Figur an diesem Punkt, P, punktspiegeln. Man nennt diesen Punkt dann Spiegelpunkt oder Spiegelzentrum. Eine Punktspiegelung durchzuführen ist das gleiche, wie die Figur um 180° um das Spiegelzentrum zu drehen – also sieht unser Rotorblatt nach einer Punktspiegelung so aus. Wenn du eine Figur punktspiegeln willst, spiegelst du nicht die ganze Figur auf einmal – sondern Punkt für Punkt. Fangen wir mit dem Punkt A an. Den ursprünglichen Punkt, also den, den wir spiegeln, nennt man Ursprungspunkt oder auch Original. Zuerst zeichnest du einen Kreis um P und durch A. Dazu stichst du mit dem Zirkel in P ein, stellst den Radius auf den Punkt A und zeichnest den Kreis. Das ist nur ein Hilfskreis, du musst ihn also nicht sehr fest zeichnen. Als nächstes nimmst du dein Lineal oder Geodreieck und zeichnest eine Hilfsgerade durch A und durch P. Auch die kannst du ruhig dünn zeichnen. Schau mal: hier schneidet die Hilfsgerade den Hilfskreis. An diesem Schnittpunkt liegt der gespiegelte Punkt von A. Wir bezeichnen ihn mit A Strich. Den gespiegelten Punkt nennt man Bildpunkt oder kurz Bild. Bildpunkte bekommen meistens den gleichen Buchstaben wie ihre Ursprungspunkte und eben einen Strich. Also konstruieren wir mal B Strich! Weißt du schon, was du tun musst? Zuerst mit dem Zirkel einen Kreis um P und durch B zeichnen. Dann mit dem Lineal eine Gerade durch B UND P. Und hier, wo sich Gerade und Kreis schneiden, liegt der Bildpunkt B Strich. Gar nicht so schwer, oder? Für die übrigen beiden Punkte C und D der Figur gehst du genauso vor – Kreise um P, Geraden, Schnittpunkte. Jetzt musst du nur noch die Figur fertig zeichnen. Dazu verbindest du die Bildpunkte genau so, wie die Ursprungspunkte verbunden sind, also so. Fertig! Die gespiegelte Figur nennt man Bildfigur, oder auch kurz Bild. Aber Vorsicht: mit Bild meint man also manchmal die Bildfigur oder einen Bildpunkt – sei also lieber ganz deutlich mit der Benennung. Aber wieso funktioniert das denn eigentlich? Jeder Punkt ist genausoweit von P entfernt wie sein Bildpunkt. Sie liegen nämlich beide auf dem gleichen Kreis um P. Und da der Ursprungspunkt, sein Bildpunkt und das Spiegelzentrum alle auf einer Geraden liegen, befindet sich der Bildpunkt genau auf der gegenüberliegenden Seite von P. Das entspricht genau einer Drehung um 180 Grad um das Spiegelzentrum. So, zurück zu der Spielkarte. Wir haben vorhin gesagt, dass die Spielkarte Punktsymmetrisch ist. Was heißt das? Eine Figur ist punktsymmetrisch, wenn du ein Spiegelzentrum P finden kannst, für das die Bildfigur und die Ursprungsfigur genau gleich sind. Bei der Karte liegt dieses P hier in der Mitte. Und wenn wir die Karte an diesem Punkt spiegeln – sie also um 180 Grad um P drehen – sieht sie wieder genau gleich aus! Also ist die Spielkarte punktsymmetrisch. Jetzt kommen wir endlich zum Punkt und fassen zusammen! Eine Punktspiegelung entspricht einer Drehung um 180 Grad um das Spiegelzentrum. Um eine Figur punktzuspiegeln, musst du jeden Punkt der Figur einzeln an dem Spiegelzentrum spiegeln. Du spiegelst einen Punkt, indem du zuerst einen Hilfskreis um das Spiegelzentrum zeichnest, der durch den Punkt verläuft. Dann ziehst du eine Hilfsgerade durch den Punkt und das Spiegelzentrum. Am gegenüberliegenden Schnittpunkt der Geraden und des Kreises liegt der gespiegelte Punkt. Denk dran, dass der originale Punkt Ursprungspunkt heißt und der gespiegelte – Bildpunkt. Das Ganze wiederholst du mit den übrigen Punkten der Ursprungsfigur. Dann verbindest du die noch genau wie in der Ursprungsfigur zur Bildfigur. Und fertig! Na, dann mal los mit dem Helikopter! Für so etwas gibt es aber nicht die volle Punktzahl...

8 Kommentare
  1. 👍

    Von Yassin B., vor 3 Tagen
  2. richtig gut :):):):):):):):D:D:D:D<3<3<3<3<3

    Von Orlandoserban, vor 3 Monaten
  3. Wir freuen uns, dass das Video so gut bei euch ankommt und wir euch damit helfen konnten.
    Weiterhin viel Spaß beim Lernen mit unseren Videos.
    Liebe Grüße aus der Redaktion

    Von Jonas Dörr, vor 7 Monaten
  4. Ich hatte etwas Schwierigkeiten, aber jetzt klappt es super gut durch dieses Video!
    LG
    Franzi

    Von A U F Lange, vor 7 Monaten
  5. richtig gut :D :D :D :D :D

    Von P Nattermueller, vor 7 Monaten
  1. Vielen Dank! Ich hatte damit Schwierigkeiten. Jetzt habe ich es verstanden und berichtigt:)
    LG,
    Anastasia

    Von Anastasia Markela, vor 8 Monaten
  2. coooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooool

    Von Milo B., vor 9 Monaten
  3. super gut erklärt!!!!!!!!!!!!!!!!!!!!

    Von Famro Gw, vor 9 Monaten
Mehr Kommentare

Punktspiegelung Übung

Du möchtest dein gelerntes Wissen anwenden? Mit den Aufgaben zum Video Punktspiegelung kannst du es wiederholen und üben.

  • Gib die Eigenschaften von Punktspiegelungen an.

    Tipps

    Bei der Konstruktion von Spiegelbildern wird jeder Eckpunkt einzeln gespiegelt. Die Bildpunkte werden dann genau wie die Ursprungsfigur verbunden.

    So sieht eine punktgespiegelte Figur aus.

    Lösung

    Diese Aussagen sind wahr:

    Die folgenden drei Aussagen beschreiben Eigenschaften oder das übliche Verfahren beim Durchführen von Punktspiegelungen.

    • Bei einer Punktspiegelung dreht man eine Figur um $180^{\circ}$ um das Spiegelzentrum.
    • Ein durch Spiegelung gefundener Punkt heißt Bildpunkt.
    • Einen Bildpunkt bezeichnet man üblicherweise mit dem Buchstaben des Ursprungspunkts und fügt einen Strich an. Aus $A$ wird demnach $A'$.
    Diese Aussagen sind falsch:

    • Bei der Konstruktion einer Punktspiegelung spiegelt man die komplette Figur auf einmal.
    Bei der Konstruktion einer Punktspiegelung wird jeder Eckpunkt einer Figur einzeln gespiegelt. Die Bildpunkte werden dann entsprechend der Ursprungsfigur miteinander verbunden.

    • Das Spiegelzentrum ist immer ein Punkt der ursprünglichen Figur.
    Man kann eine Figur an einem beliebigen Punkt spiegeln. Dieser Punkt kann, aber muss nicht Teil der ursprünglichen Figur sein.

  • Bestimme die Bezeichnungen der Ursprungs- und Bildfigur.

    Tipps

    Bildpunkte werden mit dem Buchstaben des Ursprungspunkts und einem Strich gekennzeichnet. Aus $A$ wird demnach $A'$.

    Die Bildpunkte kannst du entsprechend der Ursprungsfigur zur Bildfigur verbinden.

    Lösung

    Die Zuordnung kann folgendermaßen erfolgen:

    • Ein Punkt der ursprünglichen Figur wird Ursprungspunkt genannt. Also ist $B$ ein Ursprungspunkt.
    • Die komplette ursprüngliche Figur wird Ursprungsfigur genannt.
    • Ein Punkt der gespiegelten Figur wird Bildpunkt genannt. Also ist $B'$ ein Bildpunkt.
    • Die komplette gespiegelte Figur wird Bildfigur genannt.
    • Der Punkt, an dem die Figur gespiegelt wird, heißt Spiegelzentrum.
    • Der Kreis, der für die Konstruktion nötig ist, heißt Hilfskreis.
    • Die Gerade, die für die Konstruktion nötig ist, heißt Hilfsgerade.
  • Beschreibe, wie man ein Bild an einem Punkt spiegelt.

    Tipps

    Um eine Figur zu spiegeln, müssen zunächst alle Eckpunkte der Figur einzeln gespiegelt werden.

    Zum Schluss werden die gespiegelten Eckpunkte verbunden.

    Lösung

    Um eine Figur zu spiegeln, müssen zunächst alle Eckpunkte der Figur einzeln gespiegelt werden. Die Punktspiegelung einzelner Punkte funktioniert so:

    • Zuerst zeichnest du einen Hilfskreis um das Spiegelzentrum $P$, der durch den ersten Ursprungspunkt $A$ geht.
    • Dann zeichnest du eine Hilfsgerade durch das Spiegelzentrum $P$ und den ersten Punkt $A$.
    • Der Schnittpunkt von Gerade und Kreis ist der Bildpunkt $A'$.
    Da die komplette Figur gespiegelt werden soll, muss das Verfahren für die anderen Punkte wiederholt werden. Dann kann man alle Bildpunkte entsprechend der ursprünglichen Figur verbinden.

    • Bei der Punktspiegelung aller anderen Eckpunkte der Ursprungsfigur gehst du genauso vor.
    • Schließlich verbindest du alle Bildpunkte entsprechend der Ursprungsfigur und erhältst die Bildfigur.
  • Erläutere, warum das Konstruktionsverfahren funktioniert.

    Tipps

    Alle Punkte auf dem Kreisrand haben den gleichen Abstand zum Kreismittelpunkt. Hier wurde ein Kreis um das Spiegelzentrum gezeichnet.

    Eine Gerade spannt genau einen Winkel von $180^{\circ}$ auf.

    Lösung

    Diese Aussagen sind wahr:

    • Da bei einer Punktspiegelung der Ursprungspunkt um $180^{\circ}$ um das Spiegelzentrum gedreht wird, müssen der Ursprungspunkt und der zugehörige Bildpunkt auf einer Geraden durch das Spiegelzentrum liegen.
    Eine Gerade spannt genau einen Winkel von $180^{\circ}$ auf. Deshalb müssen alle diese Punkte auf einer Geraden liegen.

    • Der Bildpunkt ist der Schnittpunkt zwischen Hilfsgerade und Hilfskreis, da hier zwei Bedingungen erfüllt sind: Ursprungs- und Bildpunkt müssen den gleichen Abstand zum Spiegelzentrum haben. Spiegelzentrum, Ursprungspunkt und zugehöriger Bildpunkt müssen auf einer Geraden liegen.
    • Jeder Ursprungspunkt ist genauso weit vom Spiegelzentrum entfernt wie sein Bildpunkt. Deshalb müssen Ursprungspunkt und zugehöriger Bildpunkt auf einem Kreis um das Spiegelzentrum liegen.
    Alle Punkte auf dem Kreisrand haben den gleichen Abstand zum Kreismittelpunkt. Hier wurde ein Kreis um das Spiegelzentrum gezeichnet, also müssen Ursprungspunkt und zugehöriger Bildpunkt auf diesem Kreis liegen.

    Diese Aussagen sind falsch:

    • Jeder Ursprungspunkt ist genauso weit vom Spiegelzentrum entfernt wie sein Bildpunkt. Deshalb müssen Ursprungs- und Bildpunkt auf einer Gerade liegen.
    Es stimmt, dass jeder Punkt genauso weit vom Spiegelzentrum entfernt ist, wie sein Bildpunkt. Allerdings ist das nicht der Grund dafür, dass sie auf einer Gerade liegen.

    • Der Abstand zwischen Ursprungspunkt und Spiegelzentrum sowie zwischen zugehörigem Bildpunkt und Spiegelzentrum kann auch verschieden sein.
    Die beiden Abstände müssen gleich sein.

  • Wende das Konstruktionsverfahren an.

    Tipps

    Die fertige Punktspiegelung sieht so aus.

    Der Hilfskreis wird um das Spiegelzentrum gezeichnet.

    Lösung

    Die Konstruktion funktioniert folgendermaßen:

    • Um den ersten Punkt $A(3\vert2)$ zu spiegeln, sticht sie ihren Zirkel in den Koordinatenursprung ein. Dann zeichnet sie einen Hilfskreis durch den Punkt $A$.
    • Im Anschluss legt sie ihr Lineal an den Koordinatenursprung und den Punkt $A$ an. Durch diese beiden Punkte zeichnet sie eine Hilfsgerade, die den Hilfskreis schneidet.
    • Der Schnittpunkt der Hilfsgeraden mit dem Hilfskreis ist der Bildpunkt $A'$ und liegt bei $(-3\vert-2)$.
    • Die anderen Bildpunkte konstruiert sie genauso. Damit erhält sie im Koordinatensystem die Punkte $B'(-2\vert-5)$ und $C'(-7\vert-4)$.
    • Im Anschluss verbindet sie alle Bildpunkte entsprechend der Ursprungsfigur miteinander und erhält so die Bildfigur.
  • Bestimme das Spiegelzentrum.

    Tipps

    Mit einem Hilfskreis und einer Geraden kannst du die Punkte einzeln spiegeln. Hast du alle gespiegelt, kannst du sie zu einer geometrischen Figur verbinden.

    Die richtigen Spiegelzentren kannst du herausfinden, indem du die Bilder nacheinander an den verschiedenen möglichen Spiegelzentren spiegelst. Dann überprüfst du, ob deine Bildfigur mit der gegebenen Bildfigur übereinstimmt.

    Lösung

    Die richtigen Spiegelzentren kannst du herausfinden, indem du die Bilder nacheinander an den verschiedenen möglichen Spiegelzentren spiegelst. Dann überprüfst du, ob deine Bildfigur mit der gegebenen Bildfigur übereinstimmt. Die Konstruktion funktioniert folgendermaßen:

    • Um den ersten Punkt $A$ zu spiegeln, stichst du den Zirkel in das Spiegelzentrum ein. Dann zeichnest du einen Hilfskreis durch den Eckpunkt $A$.
    • Im Anschluss legst du dein Lineal an das Spiegelzentrum und den Punkt $A$ an. Durch diese beiden Punkte zeichnest du eine Hilfsgerade, die den Hilfskreis schneidet.
    • Der Schnittpunkt der Hilfsgeraden mit dem Hilfskreis ist der Bildpunkt $A'$.
    • Die anderen Bildpunkte konstruierst du genauso und verbindest sie im Anschluss entsprechend der Ursprungsfigur zu der Bildfigur.
    Damit ergeben sich die folgenden Spiegelzentren:

    • Erstes Bild: $P$
    • Zweites Bild: $R$
    • Drittes Bild: $Q$
    • Viertes Bild: $S$