Über 1,6 Millionen Schüler*innen nutzen sofatutor!
  • 93%

    haben mit sofatutor ihre Noten in mindestens einem Fach verbessert

  • 94%

    verstehen den Schulstoff mit sofatutor besser

  • 92%

    können sich mit sofatutor besser auf Schularbeiten vorbereiten

Punktsymmetrische Figuren

Punktsymmetrische Figuren bleiben nach einer Drehung um $180°$ um das Symmetriezentrum identisch mit der Ausgangsfigur. Diese spezielle Symmetrieform wird durch ein Filmbeispiel anschaulich erklärt. Außerdem lernst du, wie man punktsymmetrische Figuren erkennt, das Symmetriezentrum bestimmt und passende Figuren hinzufügt. Interessiert? Entdecke dies und vieles mehr im folgenden Text!

Du willst ganz einfach ein neues Thema lernen
in nur 12 Minuten?
Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
  • Das Mädchen lernt 5 Minuten mit dem Computer 5 Minuten verstehen

    Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.

    92%
    der Schüler*innen hilft sofatutor beim selbstständigen Lernen.
  • Das Mädchen übt 5 Minuten auf dem Tablet 5 Minuten üben

    Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.

    93%
    der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert.
  • Das Mädchen stellt fragen und nutzt dafür ein Tablet 2 Minuten Fragen stellen

    Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.

    94%
    der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.
Bewertung

Ø 3.6 / 98 Bewertungen
Die Autor*innen
Avatar
sofatutor Team
Punktsymmetrische Figuren
lernst du in der 5. Klasse - 6. Klasse - 7. Klasse - 8. Klasse

Punktsymmetrische Figuren Übung

Du möchtest dein gelerntes Wissen anwenden? Mit den Aufgaben zum Lerntext Punktsymmetrische Figuren kannst du es wiederholen und üben.
  • Vervollständige den Text zum Kreuz König.

    Tipps

    Der Buchstabe „N“ hat auch so eine andere Symmetrie.

    Du findest keine Symmetrieachse. Und trotzdem sieht der Buchstabe symmetrisch aus.

    Fallen dir noch weitere Bilder ein mit so einer Symmetrie?

    Verbinde doch da mal Punkte, die gleich aussehen.

    Schau mal: Die Verbindungsgeraden treffen sich genau in der Mitte.

    Lösung

    Eine neue Form der Symmetrie.

    Der Kreuz König sieht doch symmetrisch aus. Nur leider können wir keine Symmetrieachse finden.

    Das symmetrische Aussehen kommt daher, dass Punkte des Kreuz Königs zugehörige Bildpunkte besitzen.

    Verbinde doch mal die entsprechende Punkte mit den Bildpunkten. Was fällt dir dabei auf?

    Richtig: Die Verbindungsgeraden schneiden sich alle in einem gemeinsamen Punkt. Und diesen Punkt bezeichnet man als das Symmetriezentrum.

    Fällt dir noch etwas auf? Die Geraden schneiden sich genau in ihrer Mitte. Das bedeutet, dass der Abstand von Punkt und Bildpunkt zum Symmetriezentrum jeweils gleich ist. Dies ist eine sehr wichtige Eigenschaft.

  • Beschreibe die Punktspiegelung eines Dreiecks an einem Symmetriezentrum.

    Tipps

    Eine Punktspiegelung kann auch durch Achsenspiegelungen durchgeführt werden.

    Wie viele Achsen brauchst du dafür?

    Welche besondere Lage müssen die Achsen zueinander haben?

    Beachte, dass Bildpunkte mit Strichen oben rechts markiert sind.

    Lösung

    Eine Punktspiegelung kann auch durch zweimalige Achsenspiegelung durchgeführt werden. Die Symmetrieachsen, an denen du spiegelst, müssen senkrecht stehen und durch das vorgegebene Symmetriezentrum verlaufen.

    • Wenn du eine Figur spiegeln möchtest, so spiegelst du sie zuerst an der einen Achse. Du erhältst eine erste Bildfigur. Die jeweiligen Bildpunkte werden mit einem Strich bezeichnet.
    • Und dann spiegelst du noch einmal an der anderen Achse. Du erhältst die endgültige Bildfigur. Die jeweiligen Bildpunkte werden mit 2 Strichen bezeichnet.

  • Bestimme weitere Beispiele für punktsymmetrische Figuren.

    Tipps

    Es gibt zwei Figuren, die sind gleichzeitig punksymmetrisch und achsensymmetrisch.

    Es gibt Figuren, die sehen irgendwie symmetrisch aus. Du kannst aber keine Symmetrieachse finden.

    Dann probiere doch mal zueinander gehörende Punkte zu verbinden wie bei dem Buchstaben „N“.

    Ein „Z“ sieht wie ein hingelegtes „N“ aus.

    Beim Quadrat und Rechteck kommen für jeden Punkt verschiedene Bildpunkte in Frage. Gibt es Bildpunkte, sodass eine Punktspiegelung vorliegt?

    Lösung

    Merke dir: Bei der Achsensymmetrie gibt es eine Symmetrieachse und der Abstand von Punkt und Bildpunkt zur Symmetrieachse ist jeweils gleich. Bei der Punktsymmetrie gibt es ein Symmetriezentrum und der Abstand von Punkt und Bildpunkt zum Symmetriezentrum ist jeweils gleich.

    Ganz wichtig: Es gibt Figuren, die sind achsensymmetrisch und punktsymmetrisch.

    • Dies ist z.B. beim Quadrat und beim Rechteck der Fall. Auch ein Kreis ist beides. Das Symmetriezentrum liegt dabei direkt in der Mitte.
    Andere Figuren sind nur achsensymmetrisch:
    • Ein gleichschenkliges Dreieck und der Buchstabe „M“ sind achsensymmetrisch. Sie haben jeweils nur eine Symmetrieachse. Beachte dabei: Ist ein gleichschenklige Dreieck sogar rechtwinklig, so weist es sogar drei Symmetrieachsen auf.
    Viele Figuren sind auch nur punktsymmetrisch:
    • Ein Parallelogramm und der Buchstabe „Z“ sind punktsymmetrisch. Es gibt aber hierbei keine Symmetrieachse.

  • Ordne der oberen Figur die zugehörige Punktspiegelung der Figur zu.

    Tipps

    Eine Punktspiegelung kannst du auch durch eine zweimalige Achsenspiegelung erreichen. Dabei stehen die Spiegelungsachsen senkrecht aufeinander.

    Eine Punktspiegelung kann auch durch eine Drehung um 180° mit dem Symmetriezentrum als Drehpunkt durchgeführt werden.

    Stelle dir bei den Figuren die Drehung vor.

    Lösung

    Schauen wir uns zunächst einmal Achsen- und Punktsymmetrie im Vergleich an: Zu einem „A“ gehört als Punktspiegelung das auf dem Kopf stehende „A“. Da „A“ achsensymmetrisch ist, ist der Buchstabe an einer Achse gespiegelt wieder der Buchstabe selbst.

    Eine Punktspiegelung kann auf zwei verschiedenen Wegen durchgeführt werden:

    1. zweimalige Achsenspiegelung an zueinander senkrechten Achsen
    2. Drehung um 180° um das Symmetriezentrum
    Am ehesten siehst du die richtige Lösung, wenn dir bei den Figuren die Drehung vorstellst. Das Symmetriezentrum liegt dabei jeweils genau in der Mitte:
    • Bei dem Ellipsenausschnitt kannst du das dazugehörige Spiegelbild an dem nicht gefärbten Teil durch Drehung erkennen.
    • Bei dem Puzzleteil betrachtest du zum Beispiel eine Ausstülpung und kannst dann das Bild durch Drehung wiedererkennen.

  • Ergänze die Aussagen zur Punkt- und Achsensymmetrie.

    Tipps

    Der Buchstabe „N“ ist punktsymmetrisch. Welche Rolle spielt das Symmetriezentrum?

    Der Buchstabe „M“ ist achsensymmetrisch. Welche Rolle spielt die Symmetrieachse?

    Lösung

    Wahrscheinlich kennst du bereits die Achsensymmetrie: Dort ist der Abstand entsprechender Punkte zur Symmetrieachse gleich.

    Hier lernst du eine neue Form der Symmetrie. Der Buchstabe „N“ ist nicht achsensymmetrisch, dafür aber punktsymmetrisch:

    • Die Verbindungsgeraden eines Punktes P und seines Bildpunktes P' schneiden sich in einem gemeinsamen Punkt. Dies ist das Symmetriezentrum.
    • Diese Verbindungsgeraden schneiden sich genau in der Mitte. Damit ist der Abstand entsprechender Punkte bei Punktsymmetrie zum Symmetriezentrum gleich.
  • Untersuche die folgenden Aussagen zu Symmetrien.

    Tipps

    Zur Punktsymmetrie gehört ein Symmetriezentrum. Welche zwei anderen Möglichkeiten gibt es, Punktspiegelungen durchzuführen? Welche Rolle spielt dabei das Symmetriezentrum?

    Drehe mal den Buchstaben „H“ um 180°.

    Bei der Achsensymmetrie gibt es eine Symmetrieachse, an der du die Figur spiegeln kannst.

    Lösung

    Nur die Antworten 2, 3 und 5 sind richtig:

    1. Bei Achsensymmetrie ist der Abstand von Punkt und Bildpunkt zur Symmetrieachse gleich.

    2. Ein Kreis ist tatsächlich punktsymmetrisch. Jeder Punkt auf dem Kreisrand hat den gleichen Abstand zum Mittelpunkt. Dann haben auch Punkt und Bildpunkt den gleichen Abstand zum Mittelpunkt. Der Mittelpunkt ist das Symmetriezentrum.

    3. Anstatt eine Punktspiegelung durchzuführen, kannst du auch

    • eine Drehung um 180° mit dem Symmetriezentrum als Drehzentrum durchführen.
    • zweimal eine Achsenspiegelung durchführen. Achte dabei, dass die Achsen senkrecht stehen müssen.
    4. Gleichschenklige Dreiecke sind achsensymmetrisch. Sie sind nicht punktsymmetrisch.

    5. Der Buchstabe „H“ ist punktsymmetrisch. Drehst du das „H“ im Zentrum um 180° erhältst du wieder den gleichen Buchstaben.

    6. Gleichseitige Dreiecke sind achsensymmetrisch, aber nicht punktsymmetrisch. Als Symmetrieachsen kannst du eine der drei Mittelsenkrechten nehmen.