Über 1,6 Millionen Schüler*innen nutzen sofatutor!
  • 93%

    haben mit sofatutor ihre Noten in mindestens einem Fach verbessert

  • 94%

    verstehen den Schulstoff mit sofatutor besser

  • 92%

    können sich mit sofatutor besser auf Schularbeiten vorbereiten

Große natürliche Zahlen auf dem Zahlenstrahl

Du willst ganz einfach ein neues Thema lernen
in nur 12 Minuten?
Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
  • Das Mädchen lernt 5 Minuten mit dem Computer 5 Minuten verstehen

    Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.

    92%
    der Schüler*innen hilft sofatutor beim selbstständigen Lernen.
  • Das Mädchen übt 5 Minuten auf dem Tablet 5 Minuten üben

    Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.

    93%
    der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert.
  • Das Mädchen stellt fragen und nutzt dafür ein Tablet 2 Minuten Fragen stellen

    Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.

    94%
    der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.
Bewertung

Ø 3.9 / 139 Bewertungen
Die Autor*innen
Avatar
Team Digital
Große natürliche Zahlen auf dem Zahlenstrahl
lernst du in der 5. Klasse - 6. Klasse

Große natürliche Zahlen auf dem Zahlenstrahl Übung

Du möchtest dein gelerntes Wissen anwenden? Mit den Aufgaben zum Video Große natürliche Zahlen auf dem Zahlenstrahl kannst du es wiederholen und üben.
  • Beschreibe die Darstellung großer Zahlen am Zahlenstrahl.

    Tipps

    Beispiel:

    Die kleinste Zahl, die wir mit einem bestimmten Zahlenstrahl darstellen können, steht immer ganz links.

    Lösung

    Auf einem Zahlenstrahl können wir Zahlen geordnet darstellen. Wir können natürliche Zahlen auf dem Zahlenstrahl darstellen, egal wie groß sie sind. Dabei werden die Zahlen von links nach rechts immer größer.

    Damit alle Zahlen, die wir benötigen, auf den Zahlenstrahl passen, wählen wir eine geeignete Skalierung. Die Abstände einer bestimmten Skalierung müssen gleichmäßig groß sein. Sie sind jedoch nicht vorgegeben, es müssen also NICHT immer Zehner-Schritte sein. Wir können außerdem eine Zwischenskalierung einzeichnen, um einen besseren Überblick zu behalten.

    Häufig beginnt ein Zahlenstrahl bei Null, das muss aber NICHT sein. Wir können den Startpunkt selbst wählen, je nachdem welche Zahlen wir abbilden wollen.

    Je nachdem welche Größe wir darstellen wollen, schreiben wir an den Zahlenstrahl auch die Maßeinheit.

  • Stelle den Durchmesser der Planeten am Zahlenstrahl dar.

    Tipps

    Ermittle zunächst die Zwischenskalierung: Wie groß ist der Abstand zwischen zwei Strichen?

    Entscheide jeweils, zwischen welchen beiden Zahlen ein Eintrag liegen muss.

    Lösung

    Um die Werte am Zahlenstrahl darzustellen, betrachten wir zunächst den gegebenen Zahlenstrahl:

    Der Startpunkt ist $0$. Die Skalierung verläuft in $5\,000$er Schritten. Zur besseren Orientierung ist außerdem eine Zwischenskalierung in $1\,000$er Schritten eingetragen.

    Zählen wir die Striche ab, so erkennen wir, dass der Mond zwischen der $3\,000$ und der $4\,000$ liegt. Es müssen also $\bf{3\,475}$ sein.

    Der nächste Planet Merkur ist zwischen dem $4\,000$er Strich und dem $5\,000$er Strich. Wir tragen hier also $\bf{4\,879}$ ein.

    Der Mars liegt zwischen $6\,000$ und $7\,000$. Hier tragen wir $\bf{6\,772}$ ein.

    Die letzten beiden Planeten Venus und Erde liegen zwischen $12\,000$ und $13\,000$. Wir tragen hier die beiden verfügbaren Zahlen $\bf{12\,103}$ und $\bf{12\,735}$ so ein, dass die kleinere Zahl weiter links bei der Venus und die größere Zahl weiter rechts bei der Erde liegt.

  • Beschreibe den Zahlenstrahl.

    Tipps

    Die Skalierung wird auch als Schrittweite bezeichnet.

    Der Startpunkt ist der kleinste eingetragene Wert.

    Lösung

    Auf einem Zahlenstrahl können wir Zahlen geordnet darstellen. Wir können natürliche Zahlen auf dem Zahlenstrahl darstellen, egal wie groß sie sind. Der Zahlenstrahl ist dabei wie folgt charakterisiert:

    Damit alle Zahlen, die wir benötigen, auf den Zahlenstrahl passen, wählen wir eine geeignete Skalierung. Die Abstände einer bestimmten Skalierung müssen gleichmäßig groß sein. In unserem Beispiel beträgt die Schrittweite $50$.

    Wir können außerdem eine Zwischenskalierung einzeichnen, um einen besseren Überblick zu behalten. In unserem Beispiel sind dies $10$er Schritte.

    Häufig beginnt ein Zahlenstrahl bei Null, das muss aber nicht sein. Wir können den Startpunkt selbst wählen, je nachdem, welche Zahlen wir abbilden wollen. In unserem Beispiel ist der Startpunkt bei $3\,050$.

    Der größte Wert ist in unserem Beispiel $3\,250$.

  • Stelle die Zahlen am Zahlenstrahl dar.

    Tipps

    Die Zwischenskalierung hilft dir weiter. Zähle jeweils ab, welche Zahl durch den Strich dargestellt ist.

    Beispiel:

    Die $99\,520$ liegt etwas rechts neben der $99\,500$.

    Lösung

    Um die Werte am Zahlenstrahl darzustellen, betrachten wir zunächst den gegebenen Zahlenstrahl:

    Der Startpunkt ist $98\,500$. Die Skalierung verläuft in $500$er Schritten. Zur besseren Orientierung ist außerdem eine Zwischenskalierung in $100$er Schritten eingetragen.

    Zählen wir die Striche ab, so erkennen wir, dass der erste Wert bei $A=98\,900$ liegt.

    Der nächste Eintrag ist zwischen der $99\,500$er und der $99\,600$er. Wir tragen hier also $B=99\,520$ ein.

    Durch Abzählen der Striche erkennen wir, dass der dritte Wert bei $C=100\,500$ liegt.

    Der letzte Eintrag ist zwischen der $101\,300$er und der $101\,400$er Markierung. Wir tragen hier also $D=101\,380$ ein.

  • Vervollständige den Zahlenstrahl.

    Tipps

    Die Abstände einer bestimmten Skalierung müssen immer gleichmäßig groß sein.

    Betrachte zwei Zahlen, die nebeneinander stehen, und bestimme ihren Abstand.

    Beim zweiten Zahlenstrahl ist zum Beispiel der Abstand zwischen den ersten beiden Zahlen $0$ und $5$ genau $5$. Genauso groß muss auch der Abstand zwischen den anderen Markierungen sein.

    Lösung

    Auf einem Zahlenstrahl können wir Zahlen geordnet darstellen. Dabei werden die Zahlen von links nach rechts immer größer.

    Damit alle Zahlen, die wir benötigen, auf den Zahlenstrahl passen, wählen wir eine geeignete Skalierung. Die Abstände einer bestimmten Skalierung müssen gleichmäßig groß sein:

    • Bei dem ersten Zahlenstrahl ist der Abstand zwischen zwei Strichen jeweils $1$.
    • Bei dem zweiten Zahlenstrahl ist der Abstand zwischen zwei Strichen jeweils $5$.
    • Bei dem dritten Zahlenstrahl ist der Abstand zwischen zwei Strichen jeweils $10$.
    • Bei dem vierten Zahlenstrahl ist der Abstand zwischen zwei Strichen jeweils $1\,000$.
    Damit ergeben sich die Markierungen wie in der Abbildung zu sehen.

  • Entscheide, welcher Zahlenstrahl für die Darstellung der aufgeführten Geschwindigkeiten der Planeten geeignet ist.

    Tipps

    Überprüfe, ob der dargestellte Bereich geeignet ist. Ein zu großer Zahlenstrahl ist nicht geeignet!

    Kannst du alle drei Werte auf dem Zahlenstrahl eintragen?

    Lösung

    Wir können natürliche Zahlen auf einem Zahlenstrahl eintragen, ganz egal, wie groß sie sind. Der Zahlenstrahl muss aber geeignet sein. Das bedeutet:

    • Alle einzutragenden Werte müssen im abgebildeten Bereich liegen.
    • Der dargestellte Bereich soll nicht viel größer sein als nötig.
    Wir überprüfen nach diesen Kriterien die vier Zahlenstrahle:

    Der erste Zahlenstrahl ist geeignet: Alle drei Werte können eingetragen werden und durch den gewählten Startpunkt von $100\,000$ ist der dargestellte Bereich nicht zu groß. Wir können die Werte dann wie folgt eintragen:

    • Für den Merkur ($\bf{172\,232} ~\frac{\text{km}}{\text{h}}$) gehen wir von $150\,000$ zwei Striche nach rechts. Wir tragen die Geschwindigkeit dann etwas rechts davon ein.
    • Für die Erde ($\bf{107\,208} ~\frac{\text{km}}{\text{h}}$) tragen wir den Wert zwischen $100\,000$ und $110\,000$, also dem Strich rechts davon, ein. Die Geschwindigkeit liegt etwas näher an der $110\,000$.
    • Für die Venus ($\bf{126\,072} ~\frac{\text{km}}{\text{h}}$) gehen wir von der $100\,000$ zwei Schritte nach rechts. Die Geschwindigkeit liegt dann zwischen dem zweiten und dem dritten Strich.
    Das gleiche gilt für den zweiten Zahlenstrahl. Hier wurde nur ein anderer Endpunkt und eine andere Skalierung gewählt. Dennoch können alle drei Werte eingetragen werden:

    • Für den Merkur gehen wir von $150\,000$ etwas nach rechts und tragen dort die Geschwindigkeit ein.
    • Für die Erde tragen wir die Geschwindigkeit etwas rechts von der $100\,000$ ein.
    • Für die Venus gehen wir von der $130\,000$ etwas nach links. Dort tragen wir die Geschwindigkeit ein.
    Der dritte Zahlenstrahl ist nicht geeignet. Zwar liegen alle einzutragenden Werte im abgebildeten Bereich, es wird jedoch nur die rechte Hälfte benötigt. Die linke Hälfte des Zahlenstrahls ist überflüssig und macht die Darstellung unnötig unübersichtlich.

    Auch der vierte Zahlenstrahl ist nicht geeignet, da hier die Geschwindigkeit des Merkurs nicht eingetragen werden kann. Sie liegt außerhalb des dargestellten Bereichs.

30 Tage kostenlos testen
Mit Spaß Noten verbessern
und vollen Zugriff erhalten auf

8.095

sofaheld-Level

6.601

vorgefertigte
Vokabeln

7.921

Lernvideos

37.016

Übungen

34.279

Arbeitsblätter

24h

Hilfe von Lehrer*
innen

laufender Yeti

Inhalte für alle Fächer und Klassenstufen.
Von Expert*innen erstellt und angepasst an die Lehrpläne der Bundesländer.

30 Tage kostenlos testen

Testphase jederzeit online beenden