Über 1,6 Millionen Schüler*innen nutzen sofatutor!
  • 93%

    haben mit sofatutor ihre Noten in mindestens einem Fach verbessert

  • 94%

    verstehen den Schulstoff mit sofatutor besser

  • 92%

    können sich mit sofatutor besser auf Schularbeiten vorbereiten

Größter gemeinsamer Teiler

Größter gemeinsamer Teiler – Mathe Erfahre, wie Lena den größten gemeinsamen Teiler verwendet, um die Anzahl der Stellplätze auf ihrem Campingplatz zu berechnen. Lerne die Definition des ggT und drei verschiedene Methoden zur Bestimmung kennen. Interessiert? Dies und vieles mehr findest du im folgenden Text!

Du willst ganz einfach ein neues Thema lernen
in nur 12 Minuten?
Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
  • Das Mädchen lernt 5 Minuten mit dem Computer 5 Minuten verstehen

    Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.

    92%
    der Schüler*innen hilft sofatutor beim selbstständigen Lernen.
  • Das Mädchen übt 5 Minuten auf dem Tablet 5 Minuten üben

    Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.

    93%
    der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert.
  • Das Mädchen stellt fragen und nutzt dafür ein Tablet 2 Minuten Fragen stellen

    Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.

    94%
    der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.
Bewertung

Ø 4.0 / 210 Bewertungen
Die Autor*innen
Avatar
Team Digital
Größter gemeinsamer Teiler
lernst du in der 5. Klasse - 6. Klasse

Größter gemeinsamer Teiler Übung

Du möchtest dein gelerntes Wissen anwenden? Mit den Aufgaben zum Video Größter gemeinsamer Teiler kannst du es wiederholen und üben.
  • Beschreibe das Vorgehen bei der Ermittlung des $\text{ggT}$.

    Tipps

    Eine Teilermenge enthält alle Zahlen, die die gegebene Zahl ohne Rest teilt.

    Beispielsweise ist die Teilermenge von $15$ die Menge $\{1,3,5,15\}$. Die Teilermenge von $5$ ist die Menge $\{1,5\}$.

    Der größte gemeinsame Teiler von zwei Zahlen ist die größte Zahl, die die Teilermengen beider Zahlen gemeinsam haben.

    $\text{ggT}(5,15)=5$.

    Lösung

    So kannst du den Lückentext vervollständigen:

    „Damit Lena weiß, wie viele Reihen sie einplanen muss, muss sie den größten gemeinsamen Teiler, in Kurzform $\text{ggT}$, der Anzahl der Wohnmobile und der Anzahl der Zeltplätze bestimmen.“

    • Der $\text{ggT}$ zweier Zahlen ist die größte Zahl, die beide Zahlen ohne Rest teilt.
    „Lena schreibt sich zuerst die Teilermengen der beiden Zahlen auf. Die Teilermenge von $16$ ist die Menge $\{1, 2, 4, 8, 16\}$ und die Teilermenge von $24$ ist die Menge $\{1, 2, 3, 4, 6, 8, 12, 24\}$.“

    • Die Teilermenge gibt alle Zahlen an, durch welche die ursprüngliche Zahl ohne Rest geteilt werden kann.
    „Der $\text{ggT}$ ist die größte Zahl, die in beiden Teilermengen enthalten ist. Der größte gemeinsame Teiler von $16$ und $24$ ist also $8$.“

    • Die Schnittmenge der beiden Teilermengen ist dabei die Menge $\{1, 2, 4, 8\}$ und das größte Element dieser Menge ist die $8$. Also ist $8$ der $\text{ggT}$ von $16$ und $24$.
  • Bestimme den $\text{ggT}(216,176)$ mittels Primfaktorzerlegung.

    Tipps

    Um die Primfaktorzerlegung zu bestimmen, betrachte zuerst die Hälfte der Zahl. Also beispielsweise $216 = {2}\cdot{108}$ und zerlege dann weiter $108$.

    Wir bestimmen die Primfaktorzerlegungen von $36$ und $42$. Wir erhalten $36 = {2}\cdot{18} = {2}\cdot{2}\cdot{9} = {2}\cdot{2}\cdot{3}\cdot{3}$ und $42 = {2}\cdot{21} = {2}\cdot{3}\cdot{7}$.

    Die gemeinsamen Primfaktoren sind $2$ und $3$. Somit ist der größte gemeinsamen Teiler von $36$ und $42$ die Zahl $6$, denn ${2}\cdot{3} = 6$.

    Lösung

    Zuerst berechnen wir die Primfaktorzerlegung von $216$. Wir erhalten:

    $\begin{array}{lll} \\ 216 &=& {2}\cdot{108} \\ &=& {2}\cdot{2}\cdot{54} \\ &=& {2}\cdot{2}\cdot{2}\cdot{27} \\ &=& {2}\cdot{2}\cdot{2}\cdot{3}\cdot{9} \\ &=& {2}\cdot{2}\cdot{2}\cdot{3}\cdot{3}\cdot{3} \\ \\ \end{array}$

    Da $2$ und $3$ Primzahlen sind, sind wir hier fertig. Nun berechnen wir die Primfaktorzerlegung von $176$. Wir erhalten:

    $\begin{array}{lll} \\ 176 &=& {2}\cdot{88} \\ &=& {2}\cdot{8}\cdot{11} \\ &=& {2}\cdot{2}\cdot{2}\cdot{2}\cdot{11} \\ \\ \end{array}$

    Da $2$ und $11$ Primzahlen sind, sind wir hier ebenfalls fertig. Nun betrachten wir die gemeinsamen Primfaktoren der Zerlegungen. Diese lauten wie folgt:

    ${2}\cdot{2}\cdot{2} = 8$

    Also ist der größte gemeinsame Teiler von $216$ und $176$ die Zahl $8$. Das können wir wie folgt ausdrücken:

    $\text{ggT}(176, 216)=8$

  • Ordne den Zahlenpaaren den richtigen $\text{ggT}$ zu.

    Tipps

    Die Primfaktorzerlegung einer Primzahl ist immer die Zahl selbst.

    Der $\text{ggT}$ zweier Primzahlen ist $1$.

    Lösung

    Wir berechnen die größten gemeinsamen Teiler der Zahlenpaare mittels Primfaktorzerlegung.

    $\text{ggT}(13,11)=1$:

    • Da $13$ und $11$ Primzahlen sind, sind ihre Primfaktorzerlegungen die Zahlen selbst. Daher haben sie keine gemeinsamen Primfaktoren. Daher ist die einzige Zahl, die beide Zahlen teilt, die $1$.
    Also gilt $\text{ggT}(13,11)=1$.
    • Zahlen, deren größter gemeinsamer Teiler $1$ ist, nennt man außerdem teilerfremd. Würden wir hier den $\text{ggT}$ bestimmen, indem wir die Teilermengen der Zahlen betrachten, so würden wir feststellen, dass das einzige Element in der Schnittmenge der beiden Teilermengen die $1$ ist.

    $\text{ggT}(7,77)=7$:

    • Da $7$ eine Primzahl ist, lautet die Primfaktorzerlegung $7={7}\cdot{1}$. Außerdem gilt $77={7}\cdot{11}$ und damit ist der gemeinsame Primfaktor $7$.
    Also gilt $\text{ggT}(7,77)=7$.

    $\text{ggT}(824,24)=8$:

    • Die Primfaktorzerlegungen sind $824={2}\cdot{2}\cdot{2}\cdot{103}$ und $24={2}\cdot{2}\cdot{2}\cdot{3}$. Damit sind die gemeinsamen Primfaktoren ${2}\cdot{2}\cdot{2}=8$. Also gilt $\text{ggT}(824,24)=8$.

    $\text{ggT}(39,91)=13$:

    • Die Primfaktorzerlegungen sind $39={3}\cdot{13}$ und $91={7}\cdot{13}$. Der gemeinsame Primfaktor ist $13$ und daher gilt $\text{ggT}(39,91)=13$.

  • Ermittle den größten gemeinsamen Teiler.

    Tipps

    Du hast nun zwei Möglichkeiten:

    1. Bestimme von jeder einzelnen Zahl die Primfaktorzerlegung.
    2. Bestimme von jeder einzelnen Zahl die Teilermenge.

    Den $\text{ ggT}$ bestimmst du dann wie folgt:

    1. Der $\text{ggT}$ ist das Produkt der gemeinsamen Primfaktoren.
    2. Der $\text{ggT}$ ist das größte gemeinsame Element der Schnittmenge aller Teilermengen.
    Lösung
    • Wir berechnen zuerst $\text{ggT}(54,18)$:
    Bilden wir die Primfaktorzerlegungen, so erhalten wir
    • $54={2}\cdot{3}\cdot{3}\cdot{3}$ und
    • $18={2}\cdot{3}\cdot{3}$.
    Die gemeinsamen Primfaktoren sind dann $2$ und $3$ und wir erhalten daher $\text{ggT}(54,18)={2}\cdot{3}\cdot{3}=18$.

    Wir können jedoch $\text{ggT}(54,18)$ auch bestimmen, indem wir die Teilermengen von $54$ und $18$ betrachten. Wir erhalten die Teilermengen

    • $\{1,2,3,6,9,18,27,54\}$ von $54$ und die Teilermenge
    • $\{1,2,3,6,9,18\}$ von $18$.
    Das größte Element in der Schnittmenge der beiden Teilermengen ist $18$, daher ist $\text{ggT}(54,18)=18$.

    • Wir berechnen $\text{ggT}(35,175)$:
    Wir bilden die Primfaktorzerlegungen und erhalten
    • $35={5}\cdot{7}$ und
    • $175={5}\cdot{5}\cdot{7}$.
    Die gemeinsamen Primfaktoren sind $5$ und $7$ und wir erhalten $\text{ggT}(35,175)={5}\cdot{7}=35$.

    Die Teilermengen von $35$ und $175$ sind die Mengen

    • $\{1,5,7,35\}$ und
    • $\{1,5,7,25,35,175\}$.
    Daher ist $\text{ggT}(35,175)={5}\cdot{7}=35$.

    • Wir berechnen $\text{ggT}(52,12)$:
    Die Primfaktorzerlegungen sind
    • $52={2}\cdot{2}\cdot{13}$,
    • $12={2}\cdot{2}\cdot{3}$
    und wir erhalten daher $\text{ggT}(52,12)={2}\cdot{2}$.

    Die Teilermengen von $52$ und $12$ sind die Mengen

    • $\{1,2,4,13,26,52\}$ und
    • $\{1,2,3,4,6,12\}$.
    Das größte Element in der Schnittmenge der Teilermengen ist $4$ und daher gilt $\text{ggT}(52,12)=4$.

    • Wir berechnen $\text{ggT}(40,36,84)$:
    Die Primfaktorzerlegungen sind
    • $40 = {2}\cdot{2}\cdot{2}\cdot{5}$
    • $36 = {2}\cdot{2}\cdot{3}\cdot{3}$
    • $84 = {2}\cdot{2}\cdot{3}\cdot{7}$.
    Daher gilt $\text{ggT}(40,36,84)=4$.

    Als Teilermengen erhalten wir

    • $\{1,2,4,5,8,10,20,40\}$ von $40$,
    • $\{1,2,3,4,6,9,12,18,36\}$ von $36$ und
    • $\{1,2,3,4,6,7,12,14,21,28,42,84\}$ von $84$.
    Daher gilt $\text{ggT}(40,36,84)=4$.

  • Berechne den $\text{ggT}$ von $36$ und $42$.

    Tipps

    Du kannst den $\text{ggT}$ von $36$ und $42$ auf unterschiedliche Weisen bestimmen. Du kannst zum Beispiel die Teilermengen beider Zahlen aufschreiben. Der größte gemeinsame Teiler ist dann das größte Element der Schnittmenge der beiden Teilermengen.

    Du kannst den $\text{ggT}$ aber auch mittels Primfaktorzerlegung bestimmen. Schreibe dir dafür die Primfaktorzerlegungen von $36$ und $42$ auf. Der $\text{ggT}$ wird dann aus den gemeinsamen Primfaktoren gebildet.

    Lösung

    Folgende Aussagen sind richtig:

    • Die Teilermenge von $36$ ist die Menge $\{1,2,3,4,6,9,12,18,36\}$, die Teilermenge von $42$ ist die Menge $\{1,2,3,6,7,14,21\}$. Das größte Element, das in beiden Mengen enthalten ist, ist die $6$. Also gilt $\text{ggT}(36,42)=6$.
    Der $\text{ggT}$ zweier Zahlen ist das größte Element, das in der Schnittmenge der Teilermengen enthalten ist.

    • Wir bilden die Primfaktorzerlegungen von $36$ und $42$ und erhalten $36 = {2}\cdot{2}\cdot{3}\cdot{3}$ und $42 = {2}\cdot{3}\cdot{7}$. Dann gilt $\text{ggT}(36,42)={2}\cdot{3}=6$.
    Da die gemeinsamen Primfaktoren von $36$ und $42$ die Zahlen $2$ und $3$ sind, gilt $\text{ggT}(36,42)={2}\cdot{3}=6$.

    Folgende Aussagen sind falsch:

    • Die Teilermenge von $36$ ist die Menge $\{1,2,3,6,8,12,18,36\}$, die Teilermenge von $42$ ist die Menge $\{1,2,3,6,7,8,14,21\}$. Das größte Element, das in beiden Mengen enthalten ist, ist die $8$. Also gilt $\text{ggT}(36,42)=8$.
    Die Teilermengen sind falsch. Da $8$ kein Teiler von $36$ und kein Teiler von $42$ ist, ist $8$ nicht in den Teilermengen enthalten. Das größte Element in der Schnittmenge der beiden Teilermengen ist $6$. Daher gilt $\text{ggT}(36,42)=6$.

    • Wir bilden die Primfaktorzerlegungen von $36$ und $42$ und erhalten $36={2}\cdot{2}\cdot{3}\cdot{3}\cdot{3}$ und $42 = {2}\cdot{2}\cdot{3}\cdot{7}$. Dann gilt $\text{ggT}(36,42)={2}\cdot{2}\cdot{3}=6$.
    Die Primfaktorzerlegungen sind falsch. Die Primfaktorzerlegung von $36$ ist $36 = {2}\cdot{2}\cdot{3}\cdot{3}$ und die von $42$ ist $42 = {2}\cdot{3}\cdot{7}$. Dann sind die gemeinsamen Primfaktoren $2$ und $3$ und wir erhalten $\text{ggT}(36,42)={2}\cdot{3}=6$.

  • Ermittle den größten gemeinsamen Teiler.

    Tipps

    Betrachten wir beispielsweise ein Blumenbeet, das $160\ \text{cm}$ lang und $80\ \text{cm}$ breit ist. Berechnen wir den $\text{ggT}(160,80)$, so gibt uns dieser den höchstmöglichen Abstand der Zaunpfosten voneinander an, sodass alle Pfosten im gleichen Abstand zueinander stehen. Wollen wir dann die Anzahl der Pfosten bestimmen, so müssen wir den Umfang des Beetes durch den Abstand teilen.

    Da es sich jeweils um relativ große Zahlen handelt, empfiehlt es sich, den $\text{ggT}$ mittels Primfaktorzerlegung zu bestimmen.

    Lösung

    • Blumenbeet 1:
    Abstand der Pfosten:

    Wir bestimmen zuerst den $\text{ggT}$ von $140$ und $84$ mittels Primfaktorzerlegung. Wir erhalten

    • $140 = {2}\cdot{2}\cdot{5}\cdot{7}$ und
    • $84 = {2}\cdot{2}\cdot{3}\cdot{7}$.
    Das Produkt der gemeinsamen Primfaktoren ist dann ${2}\cdot{2}\cdot{7} = 28=\text{ggT}(140,84)$.

    Der Abstand der Pfosten beträgt somit $28\ \text{cm}$.

    Anzahl der Pfosten:

    Um zu berechnen, wie viele Pfosten Lena benötigt, müssen wir den Umfang des Beetes durch $28\ \text{cm}$ teilen. Da das Beet rechteckig ist, wird der Umfang $\text{U}$ wie folgt berechnet: $\text{U} = {2}\cdot({\text{Länge+Breite}})$. Wir erhalten $\text{U} = {2}\cdot({140\ \text{cm} + 84\ \text{cm}}) = 448\ \text{cm}$ und $\frac{448\ \text{cm}}{28\ \text{cm}} = 16$.

    Somit benötigt Lena $16$ Zaunpfosten.

    • Blumenbeet 2:
    Abstand der Pfosten:

    Wie oben bestimmen wir $\text{ggT}(160,32)$ mittels Primfaktorzerlegung. Wir erhalten

    • $160={2}\cdot{2}\cdot{2}\cdot{2}\cdot{2}\cdot{5}$ und
    • $32={2}\cdot{2}\cdot{2}\cdot{2}\cdot{2}$.
    Daher gilt $\text{ggT}(160,32)={2}\cdot{2}\cdot{2}\cdot{2}\cdot{2}=32$.

    Der Abstand der Pfosten beträgt somit $32\ \text{cm}$.

    Zur Berechnung der Anzahl der Pfosten teilen wir den Umfang des Beetes durch $32\ \text{cm}$. Der Umfang des Beetes ist

    $\text{U} = {2}\cdot({160\ \text{cm} + 32\ \text{cm}}) = 384\ \text{cm}$.

    Wir erhalten daher $\frac{384\ \text{cm}}{32\ \text{cm}} = 12$. Somit benötigt Lena $12$ Zaunpfosten für das zweite Beet.

    • Blumenbeet 3:
    Abstand der Pfosten:

    Wir berechnen erneut $\text{ggT}(150,75)$. Wir erhalten die Primfaktorzerlegungen

    • $150={2}\cdot{3}\cdot{5}\cdot{5}$ und
    • $75={3}\cdot{5}\cdot{5}$.
    und es gilt $\text{ggT}(150,75)={3}\cdot{5}\cdot{5}=75$. Der Abstand der Pfosten beträgt somit $75\ \text{cm}$.

    Anzahl der Pfosten:

    Für die Berechnung der Anzahl der Pfosten ermitteln wir erneut den Umfang des Beetes. Wir erhalten

    $\text{U} = {2}\cdot({150\ \text{cm} + 75\ \text{cm}}) = 450\ \text{cm}$. Teilen wir den Umfang des Beetes durch $75$, so erhalten wir $\frac{450\ \text{cm}}{75\ \text{cm}} = 6$. Somit benötigt Lena $6$ Zaunpfosten.

30 Tage kostenlos testen
Mit Spaß Noten verbessern
und vollen Zugriff erhalten auf

8.431

sofaheld-Level

6.601

vorgefertigte
Vokabeln

7.947

Lernvideos

37.087

Übungen

34.333

Arbeitsblätter

24h

Hilfe von Lehrkräften

laufender Yeti

Inhalte für alle Fächer und Klassenstufen.
Von Expert*innen erstellt und angepasst an die Lehrpläne der Bundesländer.

30 Tage kostenlos testen

Testphase jederzeit online beenden