Über 1,6 Millionen Schüler*innen nutzen sofatutor!
  • 93%

    haben mit sofatutor ihre Noten in mindestens einem Fach verbessert

  • 94%

    verstehen den Schulstoff mit sofatutor besser

  • 92%

    können sich mit sofatutor besser auf Schularbeiten vorbereiten

Faktorregel bei Ableitungen

Video abspielen
Du willst ganz einfach ein neues Thema lernen
in nur 12 Minuten?
Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
  • Das Mädchen lernt 5 Minuten mit dem Computer 5 Minuten verstehen

    Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.

    92%
    der Schüler*innen hilft sofatutor beim selbstständigen Lernen.
  • Das Mädchen übt 5 Minuten auf dem Tablet 5 Minuten üben

    Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.

    93%
    der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert.
  • Das Mädchen stellt fragen und nutzt dafür ein Tablet 2 Minuten Fragen stellen

    Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.

    94%
    der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.
Bewertung

Ø 3.9 / 9 Bewertungen
Die Autor*innen
Avatar
Team Digital
Faktorregel bei Ableitungen
lernst du in der 9. Klasse - 10. Klasse

Faktorregel bei Ableitungen Übung

Du möchtest dein gelerntes Wissen anwenden? Mit den Aufgaben zum Video Faktorregel bei Ableitungen kannst du es wiederholen und üben.
  • Tipps

    Die Faktorregel besagt, dass ein konstanter Faktor vor der Potenz von $x$ beim Ableiten einfach erhalten bleibt.

    Die Faktorregel hat ihren Namen daher, dass sie das Verhalten eines Faktors im Funktionsterm beim Ableiten beschreibt.

    Lösung

    Die Faktorregel können wir beim Ableiten verwenden:
    Wenn wir eine Funktion ableiten wollen, die sich aus einem Term $u(x)$, der ein $x$ enthält, und einem beliebigen konstanten Faktor $k$ zusammensetzt, dann bleibt dieser Faktor beim Ableiten erhalten und wir müssen nur den Term ableiten, der das $x$ enthält.

    Wir schreiben:

    $f(x)= k \cdot u(x) \quad f'(x) = k \cdot u'(x)$

    Die Faktorregel besagt also, dass ein konstanter Faktor vor einer Potenz von $x$ beim Ableiten erhalten bleibt.

    Beispiel:
    $f(x) = 4 \cdot x^5 \quad f'(x)=4 \cdot 5x^4 = 20x^4$

    Hierbei ist $4$ der Faktor und $x^5$ der Term $u(x)$, der $x$ enthält.

  • Tipps

    Allgemein gilt:

    $f(x)= k \cdot u(x) \quad f'(x) = k \cdot u'(x) \quad\quad$ (Faktorregel)

    Beispiel:
    $f(x) = 4 \cdot x^5 \quad f'(x)=4 \cdot 5x^4 = 20x^4$

    Lösung

    Ist ein Funktionsterm das Produkt aus einem konstanten Faktor $k$ und einer Potenz von $x$, so können wir den Faktor beibehalten und die Potenz wie gewohnt ableiten. Es gilt:
    $f(x)= k \cdot u(x) \qquad f'(x) = k \cdot u'(x)\quad\quad$ (Faktorregel)

    Wir wenden diese Regel auf die gegebenen Funktionen an und berechnen:

    Beispiel 1:
    $f(x)=5x^3 \quad \rightarrow \quad f'(x)=5 \cdot 3x^2 = 15x^2$
    Wir haben hierbei die Ableitungsregel für Potenzen angewendet und zum Schluss die beiden Faktoren $5$ und $3$ multipliziert.

    Beispiel 2:
    $f(x)=3x^7 \quad \rightarrow \quad f'(x)=3 \cdot 7x^6 = 21x^6$
    Auch hier haben wir die Ableitungsregel für Potenzen angewendet und zum Schluss die beiden Faktoren multipliziert.

    Beispiel 3:
    $f(x)=\frac{x^4}{2} = \frac{1}{2} \cdot x^4 \quad \rightarrow \quad f'(x)=\frac{1}{2} \cdot 4x^3 = \frac{4}{2}x^3 = 2x^3$
    Um hier die Faktorregel einfach anwenden zu können, ist es sinnvoll, den Term zunächst als Produkt zu schreiben. Dann können wir beim Ableiten den Faktor $\frac{1}{2}$ beibehalten. Zum Schluss fassen wir zusammen.

  • Tipps

    Ein konstanter Faktor bleibt beim Ableiten erhalten.

    Achte darauf, dass es sich um einen konstanten Faktor handeln muss.

    Faktor $\cdot$ Faktor = Produkt

    Lösung

    Faktorregel:
    Wenn wir eine Funktion ableiten wollen, die sich aus einem Term $u(x)$, der die Variable $x$ enthält, und einem beliebigen konstanten Faktor $k$ zusammensetzt, dann bleibt dieser Faktor beim Ableiten erhalten und wir müssen nur den Term ableiten, der das $x$ enthält. Wichtig ist dabei, dass der Faktor konstant ist, er darf also nicht die Variable $x$ enthalten.

    Bei folgenden Funktionen kann die Faktorregel angewendet werden:
    Wir können sie in der Form $k \cdot u(x)$ schreiben.

    • $f(x) =-\frac{1}{2} \cdot \sqrt{x} \qquad$ Es ist $k = -\frac{1}{2}$ und $u(x) = \sqrt{x}$.
    • $f(x) = 1,1 \cdot \sin(x) \qquad$ Es ist $k = 1,1$ und $u(x) = \sin(x)$.
    • $f(x) = \frac{2}{x^2} = 2 \cdot \frac{1}{x^2} \qquad$ Es ist $k = 2$ und $u(x) = \frac{1}{x^2}$.
    • $f(x) =-4 \frac{2}{x+5} = -4 \cdot 2 \cdot \frac{1}{x+5} = -8 \cdot \frac{1}{x+5} \qquad$ Es ist $k = -8$ und $u(x) = \frac{1}{x+5}$.
    Bei folgenden Funktionen kann die Faktorregel nicht angewendet werden:

    • $f(x) = 3x \cdot x^2 \qquad$ Der Faktor enthält die Variable $x$.
    • $f(x) = -24 + x^5 \qquad$ Es wird addiert, somit handelt es sich um einen Summanden.
    • $f(x) = \frac{x-1}{x+1} \qquad$ Es gibt keinen konstanten Faktor.
    • $f(x) = -x \cdot \frac{1}{x^2+2} \qquad$ Der Faktor enthält die Variable $x$.
  • Tipps

    Die Potenzregel besagt: $f(x)=x^n \quad f'(x)=n \cdot x^{n-1}$

    Du kannst sie auch auf negative Exponenten und auf Brüche und Dezimalzahlen im Exponenten anwenden.

    Du kannst eine Wurzel auch als Exponent schreiben, es gilt:
    $\sqrt[n]{x} = x^{\frac{1}{n}}$

    Beispiel:
    $\sqrt[3]{x} = x^{\frac{1}{3}}$

    Lösung

    Wir können die Funktionen ableiten, indem wir die Faktorregel und die Potenzregel anwenden:

    • Faktorregel: $f(x)= k \cdot u(x) \quad f'(x) = k \cdot u'(x)$
    • Potenzregel: $f(x)=x^n \quad f'(x)=n \cdot x^{n-1}$
    Wir betrachten die einzelnen Funktionen und rechnen Schritt für Schritt:

    Beispiel 1:
    $f(x)=-3x^5 \quad \rightarrow \quad f'(x) = -3 \cdot 5x^4 = -15x^4$

    Beispiel 2:
    $f(x)=-\frac{4}{x^2} = -4 \cdot \frac{1}{x^2} = -4 \cdot x^{-2} \quad \rightarrow \quad f'(x) = -4 \cdot -2x^{-3} = 8x^{-3} = \frac{8}{x^3} $

    Beispiel 3:
    $f(x)=2x^{-3} \quad \rightarrow \quad f'(x)= 2 \cdot -3x^{-4} = -6 \cdot x^{-4} = \frac{-6}{x^4}$

    Beispiel 4:
    $f(x)=\frac{-2}{\sqrt{x}} = -2 \cdot \frac{1}{\sqrt{x}} = -2 \cdot \frac{1}{x^{\frac{1}{2}}} = -2 \cdot x^{-\frac{1}{2}} \quad \rightarrow \quad f'(x)= -2 \cdot -\frac{1}{2} x^{-\frac{1}{2}-1} = x^{-\frac{3}{2}}$

  • Tipps

    Die Potenzregel lautet:

    $f(x)=x^n \quad f'(x)=n \cdot x^{n-1}$

    Du kannst die Potenzregel auch auf negative Exponenten anwenden.

    Beispiel:

    $f(x)=x^{-3} \quad f'(x)=-3x^{-4}$

    Lösung

    Zum Ableiten von Potenzen verwenden wir die Potenzregel. Sie lautet:

    $f(x)=x^n \quad f'(x)=n \cdot x^{n-1}$

    Wir schreiben beim Ableiten also den Exponenten als Faktor vor die Potenz und verringern den Exponenten der Potenz dann um eins.

    Wir wenden diese Regel auf die gegebenen Funktionen an:

    • $f(x)=x^3 ~~\quad \rightarrow \quad f'(x)=3 \cdot x^{3-1} = 3x^2$
    • $f(x)=x^4 ~~\quad \rightarrow \quad f'(x)=4 \cdot x^{4-1} = 4x^3$
    • $f(x)=x^7 ~~\quad \rightarrow \quad f'(x)=7 \cdot x^{7-1} = 7x^6$
    • $f(x)=x^{-1} \quad \rightarrow \quad f'(x)=-1 \cdot x^{-1-1} = -x^{-2}$
  • Tipps

    Schreibe den Funktionsterm jeweils zuerst so, dass du den konstanten Vorfaktor gut erkennst.

    Es gilt:

    $f(x)=\sin(x) \quad f'(x)=\cos(x)$
    $f(x)=\cos(x) \quad f'(x)=-\sin(x)$

    $\sqrt{x} = x^{\frac{1}{2}}$

    Lösung

    Wir können die Funktionen ableiten, indem wir die Faktorregel und die Potenzregel anwenden. Dazu schreiben wir den Funktionsterm zunächst so, dass wir den konstanten Vorfaktor und die Potenz gut erkennen können.
    Wir betrachten die einzelnen Funktionen und rechnen Schritt für Schritt:

    Funktion 1:
    $f(x)=3 \frac{4}{\sqrt{x}} = 3 \cdot 4 \cdot \frac{1}{\sqrt{x}} = 12 \cdot x^{-\frac{1}{2}}$
    $f'(x)=12 \cdot (-\frac{1}{2}) \cdot x^{-\frac{1}{2}-1} = -6 \cdot x^{-\frac{3}{2}} = -6 \cdot \frac{1}{\sqrt{x}^3}$

    Funktion 2:
    $f(x)=-3 \frac{\sin(x)}{4} = -3 \cdot \frac{1}{4} \cdot \sin(x) = -\frac{3}{4} \cdot \sin(x) = -0,75 \cdot \sin(x)$
    $f'(x)= -0,75 \cdot \cos(x)$

    Funktion 3:
    $f(x)=3 \frac{4x^2}{x^3} = 3 \cdot 4 \cdot \frac{x^2}{x^3} = 12 \cdot \frac{1}{x} = 12 \cdot x^{-1}$
    $f'(x)= 12 \cdot (-1) \cdot x^{-1-1} = -12 \cdot x^{-2} = -12 \cdot \frac{1}{x^2}$

    Funktion 4:
    $f(x) = 6 \cdot \sqrt[3]{x^4} = 6 \cdot x^{\frac{4}{3}}$
    $f'(x) = 6 \cdot \frac{4}{3} \cdot x^{\frac{4}{3}-1} = 8 \cdot x^{\frac{1}{3}} = 8 \cdot \sqrt[3]{x}$

30 Tage kostenlos testen
Mit Spaß Noten verbessern
und vollen Zugriff erhalten auf

9.369

sofaheld-Level

6.600

vorgefertigte
Vokabeln

8.224

Lernvideos

38.691

Übungen

33.496

Arbeitsblätter

24h

Hilfe von Lehrkräften

laufender Yeti

Inhalte für alle Fächer und Klassenstufen.
Von Expert*innen erstellt und angepasst an die Lehrpläne der Bundesländer.

30 Tage kostenlos testen

Testphase jederzeit online beenden