Faktorregel bei Ableitungen

in nur 12 Minuten? Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
-
5 Minuten verstehen
Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.
92%der Schüler*innen hilft sofatutor beim selbstständigen Lernen. -
5 Minuten üben
Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.
93%der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert. -
2 Minuten Fragen stellen
Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.
94%der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.
Faktorregel bei Ableitungen Übung
-
Beschreibe die Faktorregel.
TippsDie Faktorregel besagt, dass ein konstanter Faktor vor der Potenz von $x$ beim Ableiten einfach erhalten bleibt.
Die Faktorregel hat ihren Namen daher, dass sie das Verhalten eines Faktors im Funktionsterm beim Ableiten beschreibt.
LösungDie Faktorregel können wir beim Ableiten verwenden:
Wenn wir eine Funktion ableiten wollen, die sich aus einem Term $u(x)$, der ein $x$ enthält, und einem beliebigen konstanten Faktor $k$ zusammensetzt, dann bleibt dieser Faktor beim Ableiten erhalten und wir müssen nur den Term ableiten, der das $x$ enthält.Wir schreiben:
$f(x)= k \cdot u(x) \quad f'(x) = k \cdot u'(x)$
Die Faktorregel besagt also, dass ein konstanter Faktor vor einer Potenz von $x$ beim Ableiten erhalten bleibt.
Beispiel:
$f(x) = 4 \cdot x^5 \quad f'(x)=4 \cdot 5x^4 = 20x^4$Hierbei ist $4$ der Faktor und $x^5$ der Term $u(x)$, der $x$ enthält.
-
Vervollständige die Ableitungen.
TippsAllgemein gilt:
$f(x)= k \cdot u(x) \quad f'(x) = k \cdot u'(x) \quad\quad$ (Faktorregel)
Beispiel:
$f(x) = 4 \cdot x^5 \quad f'(x)=4 \cdot 5x^4 = 20x^4$LösungIst ein Funktionsterm das Produkt aus einem konstanten Faktor $k$ und einer Potenz von $x$, so können wir den Faktor beibehalten und die Potenz wie gewohnt ableiten. Es gilt:
$f(x)= k \cdot u(x) \qquad f'(x) = k \cdot u'(x)\quad\quad$ (Faktorregel)Wir wenden diese Regel auf die gegebenen Funktionen an und berechnen:
Beispiel 1:
$f(x)=5x^3 \quad \rightarrow \quad f'(x)=5 \cdot 3x^2 = 15x^2$
Wir haben hierbei die Ableitungsregel für Potenzen angewendet und zum Schluss die beiden Faktoren $5$ und $3$ multipliziert.Beispiel 2:
$f(x)=3x^7 \quad \rightarrow \quad f'(x)=3 \cdot 7x^6 = 21x^6$
Auch hier haben wir die Ableitungsregel für Potenzen angewendet und zum Schluss die beiden Faktoren multipliziert.Beispiel 3:
$f(x)=\frac{x^4}{2} = \frac{1}{2} \cdot x^4 \quad \rightarrow \quad f'(x)=\frac{1}{2} \cdot 4x^3 = \frac{4}{2}x^3 = 2x^3$
Um hier die Faktorregel einfach anwenden zu können, ist es sinnvoll, den Term zunächst als Produkt zu schreiben. Dann können wir beim Ableiten den Faktor $\frac{1}{2}$ beibehalten. Zum Schluss fassen wir zusammen. -
Entscheide, bei welchen Funktionen die Faktorregel beim Ableiten angewendet wird.
TippsEin konstanter Faktor bleibt beim Ableiten erhalten.
Achte darauf, dass es sich um einen konstanten Faktor handeln muss.
Faktor $\cdot$ Faktor = Produkt
LösungFaktorregel:
Wenn wir eine Funktion ableiten wollen, die sich aus einem Term $u(x)$, der die Variable $x$ enthält, und einem beliebigen konstanten Faktor $k$ zusammensetzt, dann bleibt dieser Faktor beim Ableiten erhalten und wir müssen nur den Term ableiten, der das $x$ enthält. Wichtig ist dabei, dass der Faktor konstant ist, er darf also nicht die Variable $x$ enthalten.Bei folgenden Funktionen kann die Faktorregel angewendet werden:
Wir können sie in der Form $k \cdot u(x)$ schreiben.- $f(x) =-\frac{1}{2} \cdot \sqrt{x} \qquad$ Es ist $k = -\frac{1}{2}$ und $u(x) = \sqrt{x}$.
- $f(x) = 1,1 \cdot \sin(x) \qquad$ Es ist $k = 1,1$ und $u(x) = \sin(x)$.
- $f(x) = \frac{2}{x^2} = 2 \cdot \frac{1}{x^2} \qquad$ Es ist $k = 2$ und $u(x) = \frac{1}{x^2}$.
- $f(x) =-4 \frac{2}{x+5} = -4 \cdot 2 \cdot \frac{1}{x+5} = -8 \cdot \frac{1}{x+5} \qquad$ Es ist $k = -8$ und $u(x) = \frac{1}{x+5}$.
- $f(x) = 3x \cdot x^2 \qquad$ Der Faktor enthält die Variable $x$.
- $f(x) = -24 + x^5 \qquad$ Es wird addiert, somit handelt es sich um einen Summanden.
- $f(x) = \frac{x-1}{x+1} \qquad$ Es gibt keinen konstanten Faktor.
- $f(x) = -x \cdot \frac{1}{x^2+2} \qquad$ Der Faktor enthält die Variable $x$.
-
Bestimme die Ableitung der Funktion.
TippsDie Potenzregel besagt: $f(x)=x^n \quad f'(x)=n \cdot x^{n-1}$
Du kannst sie auch auf negative Exponenten und auf Brüche und Dezimalzahlen im Exponenten anwenden.
Du kannst eine Wurzel auch als Exponent schreiben, es gilt:
$\sqrt[n]{x} = x^{\frac{1}{n}}$Beispiel:
$\sqrt[3]{x} = x^{\frac{1}{3}}$LösungWir können die Funktionen ableiten, indem wir die Faktorregel und die Potenzregel anwenden:
- Faktorregel: $f(x)= k \cdot u(x) \quad f'(x) = k \cdot u'(x)$
- Potenzregel: $f(x)=x^n \quad f'(x)=n \cdot x^{n-1}$
Beispiel 1:
$f(x)=-3x^5 \quad \rightarrow \quad f'(x) = -3 \cdot 5x^4 = -15x^4$Beispiel 2:
$f(x)=-\frac{4}{x^2} = -4 \cdot \frac{1}{x^2} = -4 \cdot x^{-2} \quad \rightarrow \quad f'(x) = -4 \cdot -2x^{-3} = 8x^{-3} = \frac{8}{x^3} $Beispiel 3:
$f(x)=2x^{-3} \quad \rightarrow \quad f'(x)= 2 \cdot -3x^{-4} = -6 \cdot x^{-4} = \frac{-6}{x^4}$Beispiel 4:
$f(x)=\frac{-2}{\sqrt{x}} = -2 \cdot \frac{1}{\sqrt{x}} = -2 \cdot \frac{1}{x^{\frac{1}{2}}} = -2 \cdot x^{-\frac{1}{2}} \quad \rightarrow \quad f'(x)= -2 \cdot -\frac{1}{2} x^{-\frac{1}{2}-1} = x^{-\frac{3}{2}}$ -
Bestimme die Ableitung der Funktion $f(x)$ mithilfe der Potenzregel.
TippsDie Potenzregel lautet:
$f(x)=x^n \quad f'(x)=n \cdot x^{n-1}$
Du kannst die Potenzregel auch auf negative Exponenten anwenden.
Beispiel:
$f(x)=x^{-3} \quad f'(x)=-3x^{-4}$
LösungZum Ableiten von Potenzen verwenden wir die Potenzregel. Sie lautet:
$f(x)=x^n \quad f'(x)=n \cdot x^{n-1}$
Wir schreiben beim Ableiten also den Exponenten als Faktor vor die Potenz und verringern den Exponenten der Potenz dann um eins.
Wir wenden diese Regel auf die gegebenen Funktionen an:
- $f(x)=x^3 ~~\quad \rightarrow \quad f'(x)=3 \cdot x^{3-1} = 3x^2$
- $f(x)=x^4 ~~\quad \rightarrow \quad f'(x)=4 \cdot x^{4-1} = 4x^3$
- $f(x)=x^7 ~~\quad \rightarrow \quad f'(x)=7 \cdot x^{7-1} = 7x^6$
- $f(x)=x^{-1} \quad \rightarrow \quad f'(x)=-1 \cdot x^{-1-1} = -x^{-2}$
-
Ermittle den Faktor bei der Ableitung.
TippsSchreibe den Funktionsterm jeweils zuerst so, dass du den konstanten Vorfaktor gut erkennst.
Es gilt:
$f(x)=\sin(x) \quad f'(x)=\cos(x)$
$f(x)=\cos(x) \quad f'(x)=-\sin(x)$$\sqrt{x} = x^{\frac{1}{2}}$
LösungWir können die Funktionen ableiten, indem wir die Faktorregel und die Potenzregel anwenden. Dazu schreiben wir den Funktionsterm zunächst so, dass wir den konstanten Vorfaktor und die Potenz gut erkennen können.
Wir betrachten die einzelnen Funktionen und rechnen Schritt für Schritt:Funktion 1:
$f(x)=3 \frac{4}{\sqrt{x}} = 3 \cdot 4 \cdot \frac{1}{\sqrt{x}} = 12 \cdot x^{-\frac{1}{2}}$
$f'(x)=12 \cdot (-\frac{1}{2}) \cdot x^{-\frac{1}{2}-1} = -6 \cdot x^{-\frac{3}{2}} = -6 \cdot \frac{1}{\sqrt{x}^3}$Funktion 2:
$f(x)=-3 \frac{\sin(x)}{4} = -3 \cdot \frac{1}{4} \cdot \sin(x) = -\frac{3}{4} \cdot \sin(x) = -0,75 \cdot \sin(x)$
$f'(x)= -0,75 \cdot \cos(x)$Funktion 3:
$f(x)=3 \frac{4x^2}{x^3} = 3 \cdot 4 \cdot \frac{x^2}{x^3} = 12 \cdot \frac{1}{x} = 12 \cdot x^{-1}$
$f'(x)= 12 \cdot (-1) \cdot x^{-1-1} = -12 \cdot x^{-2} = -12 \cdot \frac{1}{x^2}$Funktion 4:
$f(x) = 6 \cdot \sqrt[3]{x^4} = 6 \cdot x^{\frac{4}{3}}$
$f'(x) = 6 \cdot \frac{4}{3} \cdot x^{\frac{4}{3}-1} = 8 \cdot x^{\frac{1}{3}} = 8 \cdot \sqrt[3]{x}$
9.369
sofaheld-Level
6.600
vorgefertigte
Vokabeln
8.224
Lernvideos
38.691
Übungen
33.496
Arbeitsblätter
24h
Hilfe von Lehrkräften

Inhalte für alle Fächer und Klassenstufen.
Von Expert*innen erstellt und angepasst an die Lehrpläne der Bundesländer.
Testphase jederzeit online beenden
Beliebteste Themen in Mathematik
- Römische Zahlen
- Prozentrechnung
- Prozentrechnung - Übungen
- Primzahlen
- Geometrische Lagebezeichnungen
- Was ist eine Ecke?
- Rechteck
- Was ist eine Gleichung?
- Pq-Formel
- Binomische Formeln
- Trapez
- Flächeninhalt – Übungen
- Volumen Zylinder
- Potenzgesetze – Übungen
- Umfang Kreis
- Zehnerzahlen vergleichen und ordnen – Übungen
- Quadrat
- Zahlen sortieren – Übungen
- Division
- Binomische Formeln – Übungen
- Raute
- Brüche umwandeln Übungen
- Parallelogramm
- Ungleichungen – Übungen
- Polynomdivision
- Zahlen bis 1000 ordnen – Übungen
- Was Ist Eine Viertelstunde
- Terme mit Variablen aufstellen – Übungen
- Prisma
- Die Grundrechenarten – Übungen
- Mitternachtsformel
- Äquivalenzumformung
- Grundrechenarten Begriffe
- Größer Kleiner Zeichen
- Dreiecksarten
- Punkt-vor-Strich und Klammern-zuerst-Regel
- Aufbau von Dreiecken
- Quader
- Zahlen runden – Übungen
- Satz Des Pythagoras
- Ziffern und Stellenwerte – Übungen
- Dreieck Grundschule
- Koordinatensystem – Übungen
- Erste Binomische Formel
- Kreis
- Trigonometrie
- Trigonometrische Funktionen
- Standardabweichung
- Quadratische Gleichungen – Übungen
- Flächeninhalt