Über 1,6 Millionen Schüler*innen nutzen sofatutor!
  • 93%

    haben mit sofatutor ihre Noten in mindestens einem Fach verbessert

  • 94%

    verstehen den Schulstoff mit sofatutor besser

  • 92%

    können sich mit sofatutor besser auf Schularbeiten vorbereiten

Differenzenquotient bestimmen

Du willst ganz einfach ein neues Thema lernen
in nur 12 Minuten?
Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
  • Das Mädchen lernt 5 Minuten mit dem Computer 5 Minuten verstehen

    Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.

    92%
    der Schüler*innen hilft sofatutor beim selbstständigen Lernen.
  • Das Mädchen übt 5 Minuten auf dem Tablet 5 Minuten üben

    Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.

    93%
    der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert.
  • Das Mädchen stellt fragen und nutzt dafür ein Tablet 2 Minuten Fragen stellen

    Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.

    94%
    der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.
Bewertung

Ø 3.8 / 85 Bewertungen
Die Autor*innen
Avatar
Team Digital
Differenzenquotient bestimmen
lernst du in der 9. Klasse - 10. Klasse - 11. Klasse - 12. Klasse - 13. Klasse

Differenzenquotient bestimmen Übung

Du möchtest dein gelerntes Wissen anwenden? Mit den Aufgaben zum Video Differenzenquotient bestimmen kannst du es wiederholen und üben.
  • Benenne den Differenzenquotienten.

    Tipps

    Der Differenzenquotient ist die Steigung der Gerade im Bild.

    Die Steigung $m$ einer Gerade berechnest du mit einem Steigungsdreieck:

    $ m = \frac{\Delta_y}{\Delta_x} $

    Die Funktionswerte werden auf der $y$-Achse abgetragen.

    Lösung

    Jeder Differenzenquotient einer Funktion ist die Steigung einer Sekante durch zwei Punkte des Funktionsgraphen. Der Funktionsgraph ist die Menge aller Punkte $(x|y)$, für die gilt: $y=f(x)$. Die Steigung der Sekante durch die Punkte $(x_0|f(x_0))$ und $(x_1|f(x_1))$ findest du mit dem Steigungsdreieck heraus: Du berechnest zuerst die Differenz der $y$-Werte $\Delta_y =y_1-y_0$ und die Differenz der zugehörigen $x$-Werte. Der Quotient dieser Differenzen ist der Differenzenquotient oder die Steigung der Sekante:

    $D_{[x_0;x_1]} = \frac{f(x_1) -f(x_0) }{x_1-x_0}$

  • Vervollständige die Sätze.

    Tipps

    Der Graph einer linearen Funktion ist eine Gerade.

    Eine Gerade durch zwei Punkte eines Funktionsgraphen heißt Sekante.

    Nur bei einer Gerade ist die Steigung überall gleich.

    Lösung

    Folgende Sätze sind richtig:

    • „Die Steigung einer Geraden ... ist an jeder Stelle gleich.“ Denn eine Gerade (die nicht parallel zur $y$-Achse verläuft) wird durch eine Funktion der Form $f(x)=mx+b$ beschrieben. Die Steigung der Gerade ist die Zahl $m$. Für beliebige Stellen $x_0$ und $x_1$ ist der Differenzenquotient $D_{[x_0;x_1]} = \frac{(mx_1+b)-(mx_0+b)}{x_1-x_0} =m$.
    • „Die mittlere Änderungsrate einer nichtlinearen Funktion ... ist nicht an jeder Stelle gleich.“ Die mittlere Änderungsrate entspricht der Steigung der Tangente. Sie ist genau bei linearen Funktionen konstant, denn deren Funktionsgraph ist eine Gerade. Die Steigung $m$ der Gerade ist der Differenzenquotient bzw. die mittlere Änderungsrate.
    • „Die Steigung der Sekante durch die Punkte $(x_0|f(x_0))$ und $(x_1|f(x_1))$ ... ist der Differenzenquotient $D_{[x_0;x_1]}$ von $f$.“ Dies ist genau die Definition des Differenzenquotienten.
    • „Der Zähler des Differenzenquotienten $D_{[x_0;x_1]}$ ... ist $f(x_1)-f(x_0)$.“ Der Differenzenquotient ist der Quotient der Differenzen der Funktionswerte $\Delta_y$ und der zugehörigen Werte der Variablen $\Delta_x$. Im Zähler des Differenzenquotienten steht also $\Delta_y=y_1-y_0=f(x_1)-f(x_0)$.
    • „Je näher die Stellen $x_0$ und $x_1$ beieinander liegen, ... desto näher liegt die Sekante an der Tangente.“ Die Sekante verläuft durch zwei Punkte des Funktionsgraphen. Nähert man die beiden Punkte einander an, bis sie nur noch ein Punkt sind, so wird aus der Sekante die Tangente dieses Punkts.
  • Bestimme die Differenzenquotienten.

    Tipps

    Der Differenzenquotient $D_{x_0;x_1}$ ist die Steigung der Geraden durch die Punkte $(x_0|f(x_0))$ und $(x_1|f(x_1))$.

    Im Zähler des Differenzenquotienten steht $\Delta_y$.

    Bei dieser Funktion ist

    $D_{1;2} = \frac{3-0}{2-1} =3$

    Lösung

    Der Differenzenquotient $D_{[x_0;x_1]}$ einer Funktion $f$ bezüglich der Stellen $x_0$ und $x_1$ ist die Steigung der Sekante durch die Punkte $(x_0|f(x_0))$ und $(x_1|f(x_1))$. Du findest zu jeder Funktion den passenden Differenzenquotienten, indem du die drei Differenzenquotienten $D_{[0;1]}$ und $D_{[0;2]}$ und $D_{[-3;2]}$ für die verschiedenen Funktionen ausrechnest. Hier ist exemplarisch die Rechnung für eine der Funktionen:

    Zum Funktionsgraphen der Funktion $f(x)=x^2-2x+1$ gehören die Punkte $(-3|f(-3)) = (-3|16)$ und $(0|f(0)) = (0|1)$ und $(1|f(1))=(1|0)$ und $(2|f(2)) = (2|1)$. Die zugehörigen Differenzenquotienten sind:

    $ \begin{array}{rcl} D_{[0;1]} &=& \frac{0-1}{1-0} &=& -1 \\ D_{[0;2]} &=& \frac{1-1}{2-0} &=& 0 \\ D_{[-3;2]} &=& \frac{1-16}{2-(-3)} &=& -5\\ \end{array} $

    Die Differenzenquotienten $D_{[0;2]}$ und $D_{[-3;2]}$ passen nicht zu den angegebenen Werten.

    Im Bild sieht du den Funktionsgraphen der Funktion $f(x) =x^2-2x+1$ mit den drei oben berechneten Differenzenquotienten.

  • Bestimme die Differenzenquotienten.

    Tipps

    Bestimme die Funktionswerte der beiden Stellen im Index des Differenzenquotienten und deren Differenz.

    Ist der Differenzenquotient negativ, so gehört zu dem größeren $x$-Wert der kleinere $y$-Wert.

    Lösung

    Du kannst die Differenzenquotienten der einzelnen Funktionen zwischen verschiedenen Stellen berechnen. Der Differenzenquotient zwischen den Stellen $x_0$ und $x_1$ ist:

    $ D_{[x_0;x_1]} = \frac{f(x_1)-f(x_0)}{x_1-x_0} $

    Du berechnest also jeweils zuerst die Differenzen der $y$-Werte $\Delta_y =y_1-y_0 =f(x_1) -f(x_0)$ und die zugehörigen Differenzen der $x$-Werte $\Delta_x = x_1-x_0$. Der Differenzenquotient ist der Quotient dieser Differenzen. So erhältst du folgende Zordnung:

    Beispiel 1:

    • $D_{[0;1]}=1$: Die periodische Funktion hat bei $x_1=1$ den Funktionswert $f(1)=1$, bei $x_0 =0$ den Funktionswert $f(x_0)=0$. Daher ist $D_{[0;1]} =\frac{1-0}{1-0}=1$.
    • $D_{[1;2]}= \frac{0-1}{2-1} = -1$
    • $D_{[0;2]}=\frac{0-0}{2-0}=0$
    Beispiel 2:
    • $D_{[0;1]}=\frac{1-(-1)}{1-0}=2$
    • $D_{[1;2]}=\frac{5-1}{2-1}=4$
    • $D_{[-1;1]}=\frac{1-(-1)}{1-(-1)}=1$
    Beispiel 3:
    • $D_{[0;1]}=\frac{-1-(-1,5)}{1-0} =0,5$
    • $D_{[1;2]}=\frac{0-(-1)}{2-1} = 1$
    • $D_{[2;3]}=\frac{2-0}{3-2}=2$
    • $D_{[1;3]}=\frac{2-(-1)}{3-1}=1,5$

  • Beschrifte das Bild zur Bestimmung der Steigung.

    Tipps

    $\Delta_x$ ist die Differenz der $x$-Koordinaten der beiden Punkte.

    Die Steigung $m$ ist der Quotient aus $\Delta_y$ und $\Delta_x$.

    Bei einer Gerade durch die Punkte $(1|1)$ und $(4|3)$ ist die Steigung:

    $m= \frac{4-1}{3-1} = \frac{3}{2} = 1,5$

    Lösung

    Die Steigung einer Gerade ist ein Maß dafür, wie stark die Gerade auf einer Längeneinheit ansteigt. Du findest die Steigung heraus, indem du für zwei verschiedene Punkte der Gerade die Änderung der $y$- und der $x$-Werte vergleichst. Die Änderung der $y$-Werte wird mit $\Delta_y = y_1-y_0$ bezeichnet und entspricht der Länge der Vertikalen im Steigungsdreieck.

    Hier ist also $\Delta_y=6-3=3$. Die Differenz der $x$-Werte ist $\Delta_x = x_1-x_0=4-2=2$. Die Steigung $m$ ist der Quotient aus $\Delta_y$ und $\Delta_x$. Daher ist die Steigung der Gerade im Bild:

    $m = \frac{\Delta_y}{\Delta_x}=\frac{3}{2}=1,5$

  • Analysiere die Aussagen.

    Tipps

    Bei einer linearen Funktion sind alle Differenzenquotienten gleich.

    Lösung

    Folgende Aussagen sind richtig:

    • „Hat eine Funktion an zwei verschiedenen Stellen denselben Funktionswert, so ist der zugehörige Differenzenquotient $0$.“ Denn im Zähler des Differenzenquotienten steht die Differenz dieser beiden Funktionswerte.
    • „Eine Funktion ist genau dann konstant, wenn jeder Differenzenquotient $0$ ist.“ Bei einer konstanten Funktion sind alle Funktionswerte gleich und daher alle Differenzenquotienten $0$. Sind umgekehrt alle Differenzenquotienten $0$, so sind alle Differenzen von Funktionswerten $0$ und daher alle Funktionswerte gleich.
    Folgende Aussagen sind falsch:

    • „Ist der Differenzenquotient gleich der Steigung des Funktionsgraphen, so ist der Graph eine Gerade.“ Der Differenzenquotient zweier verschiedener Stellen kann mit der Steigung der Tangente übereinstimmen, ohne dass der Funktionsgraph eine Gerade ist. Bei einer periodischen Funktion sind z. B. die Differenzenquotienten von Stellen im Abstand einer Periode jeweils $0$, aber der Funktionsgraph ist keine Gerade.
    • „Ist der Differenzenquotient $0$, so ist die Funktion konstant.“ Der Differenzenquotient zweier Stellen ist $0$, wenn die Funktionswerte dieser beiden Stellen übereinstimmen. Andere Funktionswerte können aber verschieden sein.
    • „Ist eine Sekante durch einen Funktionsgraphen zugleich eine Tangente an den Funktionsgraphen, so ist der Graph eine Gerade.“ Der Funktionsgraph ist nur dann eine Gerade, wenn Sekante und Tangente an allen Stellen übereinstimmen.
    • „Stimmen bei den Funktionen $f$ und $g$ alle Differenzenquotienten überein, so ist $f(x) = g(x)$ für jedes $x$.“ Bei Funktionen $f$ und $g$, die sich um eine Konstante unterscheiden, stimmen alle Differenzenquotienten überein.
30 Tage kostenlos testen
Mit Spaß Noten verbessern
und vollen Zugriff erhalten auf

8.264

sofaheld-Level

6.601

vorgefertigte
Vokabeln

7.941

Lernvideos

37.080

Übungen

34.327

Arbeitsblätter

24h

Hilfe von Lehrer*
innen

laufender Yeti

Inhalte für alle Fächer und Klassenstufen.
Von Expert*innen erstellt und angepasst an die Lehrpläne der Bundesländer.

30 Tage kostenlos testen

Testphase jederzeit online beenden