Über 1,6 Millionen Schüler*innen nutzen sofatutor!
  • 93%

    haben mit sofatutor ihre Noten in mindestens einem Fach verbessert

  • 94%

    verstehen den Schulstoff mit sofatutor besser

  • 92%

    können sich mit sofatutor besser auf Schularbeiten vorbereiten

Mittlere Änderungsrate bei Funktionen

Video abspielen
Du willst ganz einfach ein neues Thema lernen
in nur 12 Minuten?
Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
  • Das Mädchen lernt 5 Minuten mit dem Computer 5 Minuten verstehen

    Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.

    92%
    der Schüler*innen hilft sofatutor beim selbstständigen Lernen.
  • Das Mädchen übt 5 Minuten auf dem Tablet 5 Minuten üben

    Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.

    93%
    der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert.
  • Das Mädchen stellt fragen und nutzt dafür ein Tablet 2 Minuten Fragen stellen

    Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.

    94%
    der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.
Bewertung

Ø 4.1 / 28 Bewertungen
Die Autor*innen
Avatar
Team Digital
Mittlere Änderungsrate bei Funktionen
lernst du in der 10. Klasse - 11. Klasse - 12. Klasse

Mittlere Änderungsrate bei Funktionen Übung

Du möchtest dein gelerntes Wissen anwenden? Mit den Aufgaben zum Video Mittlere Änderungsrate bei Funktionen kannst du es wiederholen und üben.
  • Tipps

    Der Differenzenquotient lautet: $\dfrac{f(b)-f(a)}{b-a}$

    Die absolute Änderung einer Funktion im Intervall $\lbrack a: b \rbrack$ ist $f(a)-f(b)$.

    Lösung

    Ein Intervall gibt den Bereich zwischen zwei Werten an. Das Intervall $\lbrack 1; 4 \rbrack$ beispielsweise enthält die Menge aller reellen Zahlen, die auf der Zahlengeraden zwischen $1$ und $4$ liegen.

    Wie stark sich die Funktionswerte in einem Intervall ändern, erkennen wir daran, wie groß die Differenz zwischen den Funktionswerten ist. Wir sprechen dann von der absoluten Änderung der Funktion.

    Wie schnell sich die Funktionswerte in dem Intervall ändern, erkennen wir hingegen an der mittleren Änderungsrate. Dabei wird neben der absoluten Änderung der Werte auch die Länge des Intervalls mit einbezogen. Wir dividieren die Differenz der Funktionswerte (absolute Änderung) durch die Differenz der zugehörigen $x$-Werte (Länge des Intervalls). Deshalb wird dieser Term im Allgemeinen auch Differenzenquotient genannt. Dieser entspricht der Bestimmung der Steigung einer Funktion mithilfe eines Steigungsdreiecks. Geometrisch ausgedrückt beschreibt der Differenzenquotient deshalb die Steigung der Sekanten $s$, welche die beiden Punkte an den Intervallgrenzen miteinander verbindet.

  • Tipps

    Bei dem Punkt $Q(4 | 2)$ ist $4$ der $x$-Wert. Der zugehörige Funktionswert ist $f(4) = 2$.

    Der Differenzenquotient lautet: $\dfrac{f(b)-f(a)}{b-a}$.

    Lösung

    Wir unterscheiden zwischen der absoluten Änderung einer Funktion, also der Differenz der Funktionswerte, und der mittleren Änderung einer Funktion.

    Die mittlere Änderungsrate können wir durch den Differenzenquotienten ermitteln. Dabei dividieren wir die Differenz der Funktionswerte durch die Differenz der zugehörigen $x$-Werte. Dies entspricht der Bestimmung der Steigung einer Funktion mithilfe des Steigungsdreiecks.

    Allgemein lautet der Differenzenquotient einer Funktion $f$ im Intervall $\lbrack a; b \rbrack$:

    $\dfrac{f(b)-f(a)}{b-a}$

    Unser Intervall lautet $\lbrack 0; 4 \rbrack$, außerdem haben wir die beiden Punkte $P$ und $Q$ gegeben.
    Es gilt:

    • $a=0$
    • $b=4$
    • $f(a) = f(0) = 5$
    • $f(b) = f(4) = 1$
    Wir können nun einsetzen und erhalten:

    $\dfrac{1-5}{4-0} = \dfrac{-4}{4} = -1$

  • Tipps

    Du kannst einen Funktionswert berechnen, indem du den $x$-Wert in die Funktionsgleichung $f(x)=2x^2+1$ einsetzt.

    Beispiel: $x=2$

    $f(2)=2 \cdot 2^2+1 = 2 \cdot 4+1=8+1=9$

    Die Länge des Intervalls $\lbrack a; b \rbrack$ berechnen wir mit $b-a$.

    Zur Bestimmung der mittleren Änderungsrate dividieren wir die Differenz der Funktionswerte durch die Länge des Intervalls.

    Lösung

    Wie stark sich die Funktionswerte in einem Intervall ändern, erkennen wir daran, wie groß die Differenz zwischen den Funktionswerten ist. Wir sprechen dann von der absoluten Änderung der Funktion.

    Wie schnell sich die Funktionswerte in dem Intervall ändern, erkennen wir hingegen an der mittleren Änderungsrate. Dabei dividieren wir die Differenz der Funktionswerte durch die Differenz der zugehörigen $x$-Werte. Deshalb wird dieser Term auch Differenzenquotient genannt.

    Die Länge eines Intervalls ergibt sich, indem wir die Differenz der Intervallgrenzen bilden.
    Ein Intervall $\lbrack a; b \rbrack$ hat also allgemein die Länge: $b - a$.

    Wir untersuchen nun die Funktion $f(x)=2x^2+1$:

    Intervall 1: $\lbrack 1; 3 \rbrack$

    Wir bestimmen zunächst die Funktionswerte an den Intervallgrenzen:

    • $f(3)= 2 \cdot 3^2+1= 18+1=19$
    • $f(1)= 2 \cdot 1^2+1= 2+1=3$
    Die absolute Änderung der Funktion beträgt also $f(3)-f(1)=19-3=16$.
    Die Länge des Intervalls ist $3-1=2$.
    Die mittlere Änderungsrate können wir nun wie folgt bestimmen: $\frac{16}{2}=8$

    Intervall 2: $\lbrack -2; -1 \rbrack$

    Wir bestimmen erneut die beiden Funktionswerte an den Intervallgrenzen:

    • $f(-1)= 2 \cdot (-1)^2+1= 2+1=3$
    • $f(-2)= 2 \cdot (-2)^2+1= 8+1=9$
    Die absolute Änderung der Funktion beträgt also $f(-1)-f(-2)=3-9=-6$.
    Die Länge des Intervalls ist $-1-(-2)=1$.
    Die mittlere Änderungsrate können wir nun wie folgt bestimmen: $\frac{-6}{1}=-6$

    Anhand der Vorzeichen unserer Ergebnisse können wir erkennen, dass der Funktionsgraph im ersten Intervall $\lbrack 1; 3 \rbrack$ steigt und im zweiten Intervall $\lbrack -2; -1 \rbrack$ fällt.

  • Tipps

    Geometrisch ausgedrückt entspricht der Differenzenquotient der Steigung einer Sekanten, welche den Funktionsgraphen an den Intervallgrenzen schneidet.

    Wenn die Funktion in einem Intervall steigt, so ist die mittlere Änderungsrate in diesem Intervall positiv.

    Lösung

    Der Differenzenquotient einer Funktion im Intervall $\lbrack a; b \rbrack$ lautet:

    $\dfrac{f(b)-f(a)}{b-a}$

    Er gibt die mittlere Änderungsrate an und entspricht der Bestimmung der Steigung einer Funktion mithilfe des Steigungsdreiecks. Geometrisch ausgedrückt entspricht der Differenzenquotient deshalb der Steigung der Sekanten, die die beiden Punkte an den Intervallgrenzen miteinander verbindet. Daher gilt:

    • Ist die Funktion in einem Intervall steigend, so ist der Differenzenquotient über dieses Intervall positiv.
    • Ist die Funktion in einem Intervall fallend, so ist der Differenzenquotient über dieses Intervall negativ.
    Ist der Funktionsgraph in Teilen des gegebenen Intervalls steigend und in Teilen fallend, so betrachten wir die Steigung einer gedachten Sekante, die die beiden Punkte an den Intervallgrenzen miteinander verbindet.

    In folgenden Intervallen steigt der Funktionsgraph bzw. die gedachte Sekante, der Differenzenquotient ist daher positiv:

    • $\lbrack -2; 0 \rbrack$
    • $\lbrack -2; -1,5 \rbrack$
    • $\lbrack 3; 3,5 \rbrack$
    • $\lbrack 1; 4 \rbrack$
    • $\lbrack -2; 1 \rbrack$
    In folgenden Intervallen fällt der Funktionsgraph, der Differenzenquotient ist daher negativ:

    • $\lbrack -4; -3 \rbrack$
    • $\lbrack 0; 0,1 \rbrack$
    • $\lbrack 1; 1,5 \rbrack$
  • Tipps

    Eine Sekante ist eine Gerade, welche den Funktionsgraphen in zwei Punkten schneidet.

    Lösung

    Das Intervall:
    Ein Intervall $\lbrack a; b\rbrack$ enthält die Menge aller reellen Zahlen, die zwischen den Intervallgrenzen $a$ und $b$ liegen. Wir können es auf der $x$-Achse als Abschnitt zwischen den Intervallgrenzen darstellen.

    Funktionsgraph:
    Eine Funktion kann im Koordinatensystem durch einen Funktionsgraphen dargestellt werden. Die grüne Kurve ist der Funktionsgraph.

    Steigungsdreieck:
    Mithilfe eines Steigungsdreiecks kann man bei linearen Funktionen die Steigung ermitteln. Bei nicht linearen Funktionen können wir mithilfe des Steigungsdreiecks den Differenzenquotienten und damit die mittlere Änderungsrate bestimmen. Das Steigungsdreieck ist hier rot dargestellt.

    Sekante:
    Eine Sekante ist eine Gerade, welche einen Funktionsgraphen in zwei Punkten schneidet. Ihre Steigung entspricht der mittleren Änderungsrate der Funktion in dem Intervall zwischen diesen beiden Punkten. Die Sekante ist blau dargestellt.

  • Tipps

    Der Differenzenquotient einer Funktion im Intervall $\lbrack a; b \rbrack$ lautet:

    $\dfrac{f(b)-f(a)}{b-a}$

    Berechne jeweils zunächst die Funktionswerte und setze dann in die Formel für den Differenzenquotienten ein.

    Der Betrag gibt den Abstand einer Zahl zur Null an. Er ist stets positiv.

    Beispiele:

    • $|-4| = 4$
    • $|3| = 3$
    • $|-8| = 8$
    • $|1,5| = 1,5$
    Lösung

    Der Differenzenquotient einer Funktion im Intervall $\lbrack a; b \rbrack$ lautet:

    $\dfrac{f(b)-f(a)}{b-a}$

    Er gibt an, wie schnell sich die Funktionswerte in dem Intervall ändern, die sogenannte mittlere Änderungsrate. Der Name Differenzenquotient kommt daher, dass wir die Differenz der Funktionswerte durch die Differenz der zugehörigen $x$-Werte dividieren.

    Beispiel 1: Wir untersuchen die Funktion $f(x)=x^3$ im Intervall $\lbrack 0; 2 \rbrack$:

    Wir bestimmen zunächst die Funktionswerte an den Intervallgrenzen:

    • $f(2)= 2^3=8$
    • $f(0)= 0^3=0$
    Wir setzen nun in die Formel für den Differenzenquotienten ein und berechnen:

    $\frac{8-0}{2-0} = \frac{8}{2} = 4$

    Beispiel 2: Wir untersuchen die Funktion $f(x)=|2x|$ im Intervall $\lbrack -1; -0,5 \rbrack$:

    Wir bestimmen zunächst die Funktionswerte an den Intervallgrenzen:

    • $f(-0,5)= |2 \cdot (-0,5)| = |-1| = 1$
    • $f(-1)= |2 \cdot (-1)| = |-2| = 2$
    Wir setzen nun in die Formel für den Differenzenquotienten ein und berechnen:

    $\frac{1-2}{-0,5-(-1)} = \frac{-1}{0,5} = -2$

    Beispiel 3: Wir untersuchen die Funktion $f(x)=\frac{x}{2+x}$ im Intervall $\lbrack 6; 8 \rbrack$:

    Wir bestimmen zunächst die Funktionswerte an den Intervallgrenzen:

    • $f(8)= \frac{8}{2+8}=\frac{8}{10}=0,8$
    • $f(6)= \frac{6}{2+6} = \frac{6}{8} = 0,75$
    Wir setzen nun in die Formel für den Differenzenquotienten ein und berechnen:

    $\frac{0,8-0,75}{8-6} = \frac{0,05}{2} = 0,025$

30 Tage kostenlos testen
Mit Spaß Noten verbessern
und vollen Zugriff erhalten auf

9.360

sofaheld-Level

6.600

vorgefertigte
Vokabeln

8.212

Lernvideos

38.688

Übungen

33.496

Arbeitsblätter

24h

Hilfe von Lehrkräften

laufender Yeti

Inhalte für alle Fächer und Klassenstufen.
Von Expert*innen erstellt und angepasst an die Lehrpläne der Bundesländer.

30 Tage kostenlos testen

Testphase jederzeit online beenden