Deine Lehrkraft hat diese Lerneinheit für dich freigeschaltet. Alle anderen Inhalte sind nur für sofatutor-Mitglieder verfügbar. Mehr erfahren

Video bewerten

Absolute und relative Häufigkeit – Überblick

Video 1 von 2

Grundlagen zum Thema Absolute und relative Häufigkeit – Überblick

Absolute und relative Häufigkeit in der Mathematik

Du kennst das vielleicht: Du machst eine neue Packung Nussmischung auf und musst feststellen: Da sind ja viel zu viele Rosinen drin! Die größere Packung, die du das letzte Mal hattest, war viel besser: Im Vergleich zu den Nüssen gab es dort viel weniger Rosinen – obwohl es absolut mehr waren. Das klingt komisch? Nicht mehr lange! Im Folgenden wirst du erfahren, was es mit absoluter und relativer Häufigkeit auf sich hat!

Absolute Häufigkeit – Definition und Erklärung

Betrachten wir zwei Packungen Nussmischung, die jeweils Rosinen, Mandeln und Erdnüsse enthalten. Packung Nummer eins beinhaltet insgesamt $40$ Teile und Packung Nummer zwei beinhaltet $120$ Teile. Man nennt die Gesamtmenge auch die Grundmenge. Betrachtet man eine spezielle Sorte aus der Mischung, ist die absolute Häufigkeit per Definition die genaue Anzahl dieser Sorte. Um beispielsweise die absolute Häufigkeit der Rosinen zu ermitteln, müssen wir zählen, wie viele Rosinen sich in jeder Packung befinden.

Packung Nummer eins Packung Nummer zwei
Grundmenge $40$ $120$ Gesamtanzahl der Teile in der Packung
absolute Häufigkeit Rosinen $8$ $20$ Gesamtanzahl der Rosinen in der Packung

In Packung Nummer eins befinden sich genau $8$ Rosinen und in Packung Nummer zwei gibt es $20$ Rosinen.

Die absolute Häufigkeit entspricht der konkreten Anzahl an Elementen einer Menge, die bestimmte Eigenschaften erfüllen.

Relative Häufigkeit – Definition und Erklärung

Die relative Häufigkeit gibt das Verhältnis zwischen absoluter Häufigkeit und Grundmenge an. Man kann also die relative Häufigkeit berechnen, indem man die absolute Häufigkeit durch die Grundmenge teilt. Das können wir auch für die Anzahl der Rosinen in den Nussmischungen machen:

Packung Nummer eins Packung Nummer zwei
Grundmenge $40$ $120$ Gesamtanzahl an Teilen
absolute Häufigkeit Rosinen $8$ $20$ Gesamtanzahl an Rosinen
relative Häufigkeit Rosinen $\dfrac{8}{40} = 0{,}2$ $\dfrac{20}{120} = 0{,}1\overline{6}$

Obwohl sich in Packung Nummer zwei absolut gesehen mehr Rosinen befinden, ist die relative Häufigkeit, also der Rosinenanteil, geringer – nämlich etwa $17\,\%$ im Vergleich zu $20\,\%$.

Die relative Häufigkeit entspricht dem Anteil, den eine Teilmenge mit bestimmten Eigenschaften an der Grundmenge hat.

Absolute und relative Häufigkeit – Unterschied

Während die absolute Häufigkeit die konkrete Anzahl angibt, mit der ein Ereignis auftritt, z. B. wie viele Rosinen sich genau in einer Packung befinden, setzt die relative Häufigkeit diese konkrete Zahl ins Verhältnis zur Gesamtzahl und gibt damit den Anteil der absoluten Häufigkeit an der Grundmenge an.

  • Absolute Häufigkeit
    Natürliche Zahl zwischen $0$ und der Gesamtzahl der Versuche
  • Relative Häufigkeit:
    Dezimal- oder Prozentzahl zwischen $0$ und $1$ bzw. $0\,\%$ und $100\,\%$

Absolute und relative Häufigkeit – Formel

Bei bekannter Grundmenge/Gesamtzahl können wir die relative Häufigkeit mithilfe der absoluten Häufigkeit berechnen und umgekehrt:

  • $\text{relative Häufigkeit} = \dfrac{\text{absolute Häufigkeit}}{\text{Gesamtzahl}}$

  • $\text{absolute Häufigkeit} = \text{relative Häufigkeit} \cdot \text{Gesamtzahl}$

Betrachten wir dies am Beispiel der Rosinen aus Packung Nummer eins:
$40 \cdot 0{,}2 = 8$
Für $20\,\%$ der $40$ Teile erhalten wir $8$ Rosinen in Packung Nummer eins.

Auch die Gesamtzahl kann aus absoluter und relativer Häufigkeit berechnet werden.
Angenommen wir wissen von einer dritten Packung, dass sie $12$ Rosinen enthält und der Rosinenanteil bei $30\,\%$ liegt.

Wir rechnen:
$\text{Gesamtzahl} = \dfrac{\text{absolute Häufigkeit}}{\text{relative Häufigkeit}} = \dfrac{12}{0{,}3} = 40$

Packung Nummer drei ist also ebenfalls eine kleine Packung mit insgesamt $40$ Teilen.

Absolute und relative Häufigkeit berechnen – Übung mit Aufgaben

Aufgabe 1: Eine Packung gemischte Beeren enthält $52$ Blaubeeren, $16$ Erdbeeren, $44$ Himbeeren und $38$ Brombeeren. Berechne die relativen Häufigkeiten.
Aufgabe 2: Auf einer Box mit $60$ Sammelkarten steht „$15\,\%$ mit Glitzereffekt“. Wie viele Glitzerkarten enthält die Box?
Aufgabe 3: Eine Packung enthält zu je $20\,\%$ rote und blaue und zu je $30\,\%$ grüne und gelbe Spielsteine. Wie viele Steine enthält die Packung insgesamt, wenn es $18$ gelbe Steine gibt?

Häufig gestellte Fragen zum Thema Absolute Häufigkeit

Was ist die absolute Häufigkeit?
Was ist die kumulierte absolute Häufigkeit?
Was ist die relative Häufigkeit?
Wie berechnet man die absolute Häufigkeit?

Transkript Absolute und relative Häufigkeit – Überblick

Viele kennen das Problem, man mag Rosinen nur bedingt und in Nussmischungen gibt es immer viel zu viele davon. Wir betrachten eine Packung eines Dreierpackt mit je 80 Gramm Inhalt und eine Familienpackungen mit 240 Gramm Inhalt, beide beinhalten Erdnüsse, Mandeln und Rosinen. Hmm... Es ergibt sich für beide Angebote doch dasselbe Gewicht. önnen sich die Angebote trotzdem in ihrer Zusammensetzung unterscheiden? m diese Frage zu beantworten, nutzen wir die absolute und relative Häufigkeit. afür betrachten wir jeweils den Inhalt einer kleinen Packung und den der großen Packung. Zunächst zählen wir alle Rosinen, die in den jeweiligen Nussmischungen enthalten sind. Wir erhalten für die kleine Packung eine Anzahl von 8 und für die Familienpackung eine Anzahl von 20 Rosinen, diese Anzahlen sind die jeweiligen absoluten Häufigkeiten. Die absolute Häufigkeit eines Objektes ist also gleich der Anzahl des jeweiligen Objektes in der Grundmenge, also in der gesamten Menge. In der kleinen Packung ist die Gesamtzahl von Nüsse und Rosinen 40, während es in der Familienpackung 120 sind. Können wir die absoluten Häufigkeiten nun direkt miteinander vergleichen? Nein, um zu bestimmen, in welcher Packung der ANTEIL an Rosinen größer ist, brauchen wir die jeweiligen relativen Häufigkeiten. Die relative Häufigkeit beschreibt den Anteil der absoluten Häufigkeit an der Grundmenge und sie ist somit der Quotient aus der absoluten Häufigkeit und der Grundmenge. Zur Bestimmung der relativen Häufigkeiten teilen wir also 8 durch 40 beziehungsweise 20 durch 120. Somit erhalten wir für die kleine Packung eine relative Häufigkeit von acht Vierzigsteln. Die Familienpackung hat einen Rosinenanteil von zwanzig Hundertzwanzigsteln. Diese beiden Brüche können wir noch kürzen zu einem Fünftel beziehungsweise einem Sechstel. Um einen besseren Eindruck über die jeweiligen Anteile zu bekommen, können wir diese Brüche auch in Prozent angeben. Wir erhalten so 20 beziehungsweise 16 Komma Periode 6 Prozent. Diese Angaben können wir auch in Dezimalzahlen ausdrücken, also 0,2 beziehungsweise 0,16 Periode 6 — das sind kurz 0 Komma 1 Periode 6. Welches Angebot sollte man wählen, wenn man nicht so viele Rosinen mag? Die Familienpackung hat einen geringeren Rosinenanteil und ist dementsprechend besser geeignet. Statt der Rosinen können wir aber auch den Anteil der Nüsse in den Nussmischungen betrachten. Hierzu notieren wir uns die absoluten Häufigkeiten der Mandeln und die absoulute Häufigkeit der Erdnüsse. Wir zählen 12 Erdnüsse und 20 Mandeln in der kleinen Nussmischung beziehungsweise 36 Erdnüsse und 64 Mandeln in der Familienpackung. Unsere Grundmengen sind weiterhin die Gesamtzahlen in den jeweiligen Packungen, also 40 beziehungsweise 120. Da wir hier nicht den Anteil der jeweiligen Nussart, sondern der Nüsse generell betrachten möchten, können wir die absoluten Häufigkeiten der Erdnüsse und Mandeln addieren. Die Summe der absoluten Häufigkeiten nennt man auch die kumulierte absolute Häufigkeit, oder auch die aufsummierte absolute Häufigkeit. Unsere kumulierten absoluten Häufigkeiten sind 12 + 20, also 32 beziehungsweise 36 + 64, also 100. Um die beiden Anteile der Nüsse besser vergleichen zu können, bietet sich wieder die relative Häufigkeit an. Wir teilen also wieder die absoluten Häufigkeiten, diesmal aber die kumulierte absoluten Häufigkeiten, durch die dazugehörigen Grundmengen. Dadurch erhalten wir kumulierte relative Häufigkeiten, also aufsummierte relative Häufigkeiten. Für die kleine Nussmischung beträgt diese 32 Vierzigstel und für die große Packung 100 Hundertzwanzigsteln. Gekürzt ergibt das 2 Fünftel beziehungsweise 5 Sechstel Auch diese Brüche können wir in Prozent angeben, wir erhalten 80 beziehungsweise 83 Komma Periode 3 Prozent. Oder als Dezimalzahl ausgedrückt, 0,8 bzw. 0,83 Periode 3; kurz 0 Komma 8 Periode 3. Auch hier kann man sehen, dass sich die Familienpackung anbietet, wenn man möglichst wenige Rosinen, also möglichst viele Nüsse haben möchte. Fassen wir das Gelernte noch zusammen. Die absolute Häufigkeit eines Objektes entspricht der Anzahl dieses Objektes in der Grundmenge. Die absolute Häufigkeit ist stets eine ganze Zahl, die größer oder gleich Null und kleiner oder gleich der Grundmenge ist. Die relative Häufigkeit eines Objektes erhalten wir, indem wir die absolute Häufigkeit dieses Objektes durch die jeweilige Grundmenge teilen. Die relative Häufigkeit ist also gleichbedeutend mit dem Anteil eines Objektes in Bezug auf die Grundmenge. Die relative Häufigkeit ist stets eine Zahl zwischen Null und Eins. Sie kann als Bruch, Dezimalzahl oder in Prozent angegeben werden. Durch Aufsummieren von absoluten Häufigkeiten, beispielsweise wenn wir mehrere verschiedene Objekte in einer Grundmenge betrachten, erhalten wir die kumulierte absolute Häufigkeit. Man spricht auch von der aufsummierten absoluten Anzahl oder Häufigkeit. Merke dir: Die kumulierte absolute Häufigkeit aller Objekte, in unserem Beispiel aller Nüsse und Rosinen, entspricht der Grundmenge. Die kumulierte relative Häufigkeit erhalten wir, in dem wir das Verhältnis von der kumulierten absoluten Häufigkeit und der Grundmenge bilden. Die kumulierte relative Häufigkeit aller Objekte, also der Anteil aller Objekte an der Grundmenge, ist gleich Eins. Nun können wir endlich unsere Nussmischung genießen. Ach herrje... Was ist denn da los? Wir sind scheinbar nicht die einzigen, die Rosinen nur bedingt mögen.

Bewertung

Ø 4.0 / 417 Bewertungen
Die Autor*innen
Avatar
Team Digital
56 Kommentare
56 Kommentare
  1. Haben das jetzt in der Schule und hab am nächsten Tag vergessen wie das geht.
    Jetzt habe ich das endlich verstanden.
    Danke🥰🥰🥰😘🤗

    Von Fatima, vor 3 Tagen
  2. suuppeerr gguutt

    Von https://schlau, vor 20 Tagen
  3. Aber der Sprecher klingt ein wenig unmotiviert und kann Sofatutor in den Videos bitte auch die Fachbegriffe wie "kumuliert" erklären? Ansonsten ist das Video gut und das Thema auch

    Von Bettyblümchen, vor 23 Tagen
  4. das vid find ich gut. schreibe in 4 Tagen meine Mathearbeit und habe noch nicht angefangen zu lernen. Aber das hab ich wohl nicht nötig dank diesem Vid

    Von Bettyblümchen, vor 23 Tagen
  5. Ich habe das Thema jetzt gut verstanden aber der Sprecher klingt ein bisschen gelangweilt

    Von Tinka, vor 30 Tagen
Mehr Kommentare