Über 1,6 Millionen Schüler*innen nutzen sofatutor!
  • 93%

    haben mit sofatutor ihre Noten in mindestens einem Fach verbessert

  • 94%

    verstehen den Schulstoff mit sofatutor besser

  • 92%

    können sich mit sofatutor besser auf Schularbeiten vorbereiten

Zweites Newtonsches Gesetz – F = m · a

Du willst ganz einfach ein neues Thema lernen
in nur 12 Minuten?
Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
  • Das Mädchen lernt 5 Minuten mit dem Computer 5 Minuten verstehen

    Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.

    92%
    der Schüler*innen hilft sofatutor beim selbstständigen Lernen.
  • Das Mädchen übt 5 Minuten auf dem Tablet 5 Minuten üben

    Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.

    93%
    der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert.
  • Das Mädchen stellt fragen und nutzt dafür ein Tablet 2 Minuten Fragen stellen

    Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.

    94%
    der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.
Bewertung

Ø 3.8 / 64 Bewertungen
Die Autor*innen
Avatar
Physik-Team
Zweites Newtonsches Gesetz – F = m · a
lernst du in der 9. Klasse - 10. Klasse - 11. Klasse

Zweites Newtonsches Gesetz – F = m · a Übung

Du möchtest dein gelerntes Wissen anwenden? Mit den Aufgaben zum Video Zweites Newtonsches Gesetz – F = m · a kannst du es wiederholen und üben.
  • Ordne jede Einheit ihrer physikalischen Größe zu.

    Tipps

    In der oberen Reihe stehen die physikalischen Größen, in der unteren Reihe die Einheiten.

    Überlege dir, in welcher Einheit du Strecken, Zeit, Geschwindigkeit, Körpermasse usw. angibst.

    Beschleunigung ist Geschwindigkeitsänderung pro Zeiteinheit.

    Lösung

    Wir geben Strecken s in Metern, Zeit t in Sekunden (oder in Minuten bzw. Stunden), Massen m in Kilogramm (oder in Gramm bzw. Tonnen) an. Diese Einheiten kennen wir bereits aus dem Alltag.

    Aber welche Einheit hat die Beschleunigung a? Die Beschleunigung gibt an, um welchen Wert sich eine Geschwindigkeit pro Zeiteinheit ändert. Die Geschwindigkeit v hat die Einheit m/s. Die Einheit der Geschwindigkeit muss also durch s geteilt werden, um auf die Einheit der Beschleunigung m/s² zu kommen.

    Geht es uns um die Einheit einer Größe, schreiben wir diese in eckige Klammern: z.B. [t]=1 s.

    Die Einheit für die Kraft ist N (Newton). Mithilfe der Formel zu Kraftberechnung F=m a können wir auch die Einheit ausrechnen, falls wir sie mal vergessen haben sollten.

    [F]=[m] $\cdot$ [a] = kg $\cdot$ m/s²

    Weil man die Kraft und somit auch ihre Einheit so oft braucht, nennt man 1 kg $\cdot$ m/s² einfach 1 N.

  • Nenne die Formeln der Dynamik.

    Tipps

    Überlege dir, ob sich Kraft und Beschleunigung direkt proportional oder indirekt proportional zueinander verhalten.

    Ob eine Formel richtig ist, kannst du dir auch mithilfe der jeweiligen Einheiten überlegen.

    Lösung

    Eine der elementaren Grundgleichungen der Mechanik beschreibt den proportionalen Zusammenhang zwischen der Kraftwirkung $\vec{F}$ und der somit hervorgerufenen Beschleunigung $\vec{a}$.

    Dabei lautet die Formel in Vektorschreibweise $\vec{F}=m \cdot \vec{a}$ oder, falls wir nur die Zahlenwerte betrachten, ${F}=m \cdot {a}$.

    Das Zeit-Weg-Gesetz $s=\frac{a}{2}\cdot t^2$ beschreibt, welchen Weg wir innerhalb einer bestimmten Zeit zurücklegen, falls eine durchschnittliche Beschleunigung a wirkt.

    Aus beiden Zusammenhängen können wir durch Umformungen andere Gleichungen herleiten.

    Die Formel $m=M\cdot n$ kommt aus der Chemie und beschreibt den Zusammenhang zwischen molarer Masse M, Stoffmenge n und Masse m,

    $\frac{1}{f}=\frac{1}{b}+\frac{1}{g}$ ist die Linsengleichung aus Optik. Sie beschreibt den Zusammenhang zwischen Brennweite f, Bildweite b und Gegenstandsweite g.

  • Nenne die Schritte der Erkenntnisgewinnung in der Physik.

    Tipps

    Womit fängt die Erkenntnisgewinnung wohl an?

    Überlege dir, wie wir in dem Video vorgegangen sind.

    Lösung

    Um dir zu überlegen, wie man wohl auf ein physikalisches Gesetz kommt und welche Schritte man dabei durchläuft, fangen wir am besten ganz am Anfang an.

    In der Regel fängt dieser Prozess immer mit einer alltäglichen oder wissenschaftlichen Beobachtung an. Zum Beispiel kann man sich fragen, warum ein Apfel zu Boden fällt.

    Um diese Beobachtung zu erklären, werden erst Hypothesen (Vermutungen) aufgestellt, die daraufhin mithilfe von Experimenten bestätigt oder widerlegt werden. Am Ende können wir ein physikalisches Gesetz formulieren.

  • Beschreibe den Zusammenhang zwischen zwei physikalischen Größen.

    Tipps

    Die Graphen entstehen, indem Messwerte von zwei verschiedenen Größen, die in einem bestimmten Zusammenhang stehen, in ein Koordinatensystem eingetragen werden.

    Graphen von direkt proportionalen Zuordnungen sind auch linear.

    Überlege dir, was es bedeutet, wenn sich die eine Größe mit dem Quadrat der anderen Größe verändert.

    Lösung

    Du siehst vier Graphen.

    Zwei davon sind linear (können mit einem Lineal gezeichnet werden). Einer dieser beiden geht durch den Ursprung des Koordinatensystems. Diese Ursprungsgerade beschreibt immer einen (direkt) proportionalen Zusammenhang.

    Die anderen beiden Graphen sind nicht linear. Der eine Graph nähert sich jeweils asymptotisch an die beiden Achsen an und beschreibt somit einen indirekt proportionalen Zusammenhang. Umso größer die eine Größe ist, umso kleiner wird die andere.

    Der letzte Graph beschreibt einen quadratischen Zusammenhang. Das heißt, wenn die eine Größe größer wird, wird die andere noch sehr viel größer. Verdoppelt sich beispielsweise eine Größe, vervierfacht sich die andere.

  • Nenne das zweite Newtonsche Grundgesetz.

    Tipps

    Direkte Proportionalität bedeutet, dass zwei Größen immer im selben Verhältnis zueinander stehen.

    Lösung

    Der gezeigte Versuch, bei dem wir einen Wagen auf einer Schiene mithilfe einer Umlenkrolle und Gewichten beschleunigt haben, hat uns Folgendes gezeigt:

    Wenn wir die Masse des angehängten Gewichts und somit auch die Gewichtskraft verdoppeln, hat sich auch die Beschleunigung des Wagens verdoppelt.

    Außerdem hat die Beschleunigung immer die Richtung der angreifenden Kraft. Im Versuch wurde die Gewichtskraft mithilfe einer Umlenkrolle um 90° umgelenkt, sodass sie den Wagen horizontal beschleunigen konnte.

  • Bestimme die Fallbeschleunigung g.

    Tipps

    g ist eine Beschleunigung.

    Du kannst dieses Experiment selbst durchführen. Überlege, was du ändern musst, um auch ohne Lichtschranke genaue Messwerte zu erhalten.

    Lösung

    Beim physikalischen Experimentieren ist es wichtig, dass man sich vor dem Experiment überlegt, was man herausfinden möchte und wie man das Experiment am besten durchführt. Dafür macht man sich vor dem Experiment Notizen, welche Materialien für den Versuchsaufbau benötigt werden und wie man vorgehen möchte:

    Versuchsaufbau:

    • schwere Kugel
    • Tisch
    • Stoppuhr mit Lichtschranke
    Durchführung:

    Wir lassen den Ball mehrmals vom Tisch fallen und messen dabei die Zeit t bis zum Aufprall auf dem Boden. Da die Reaktionszeit des Menschen beim Stoppen etwa 0,1 s beträgt, werden zwei Lichtschranken zum Starten und Stoppen der Messung verwendet. Zur Bestimmung der Fallbeschleunigung nutzen wir das Zeit-Weg-Gesetz der gleichmäßig beschleunigten Bewegung, wobei wir die Beschleunigung in diesem Fall nicht a sondern g nennen.

    $\begin{align*} s&=\frac{g}{2}\cdot t^2 \qquad |\cdot 2 \quad |:t^2\\ g&=\frac{2s}{t^2} \end{align*}$

    Dies hilft uns während des Experiments. Es dient aber auch anderen Personen dazu, das Experiment nachstellen zu können. Möglicherweise möchten sie nachprüfen, ob sie ähnliche Ergebnisse erhalten, bevor sie deinen Ergebnissen vertrauen.

    Während des Experiments trägt man seine Messwerte in eine vorbereitete Tabelle ein und notiert sich besondere Beobachtungen oder markiert falsche Messungen, um zu erklären, warum ein Wert nicht in die Messreihe passt - zum Beispiel, wenn die Stoppuhr nicht rechtzeitig gestartet ist oder zu spät gestoppt wurde.

    Wir erhalten folgende Messwerte:

    $\begin{array}{l||c|c|c|c|c|c|c|c} \text{n}& 1&2&3&4&5&6&7&8&9&10 \\ \hline t \text{ in } \text{s}& 0,50&0,45&0,31&0,35&0,40&0,30&0,41&0,43&0,38&0,48\\ \end{array}$

    Dabei ist n die Nummer der Messung und t die Fallzeit in Sekunden. Nach dem Experiment wertet man die Messung aus und formuliert seine Ergebnisse.

    Auswertung:

    Aus der Messreihe für die Zeit kann zuerst der Mittelwert berechnet werden. $\begin{align*} \overline{t}&=\frac{401\text{ s}}{10}= 0,401 \text{ s}\\ \end{align*}$

    Für die Fallbeschleunigung g erhalten wir dann.

    $\begin{align*} g&=\frac{2\cdot0,80 \text{ m}}{(0,401)^2\cdot \text{ s}^2}\\ g&=9,95 \frac{\text{m}}{\text{s}^2} \end{align*}$

    Am Schluss diskutiert man seine Ergebnisse und vergleicht sie gegebenenfalls mit anderen Ergebnissen oder Literaturwerten.

    Der experimentell ermittelte Wert stimmt gut mit dem Literaturwert von $g=9,81\frac{\text{m}}{\text {s}^2}$ überein.

    Überlege dir nun, wieso wir bei unserem Versuch eine Lichtschranke benötigen und es nicht ausreicht, eine normale Stoppuhr zu verwenden. Wie kannst du das Experiment so anpassen, dass du mit einer Handstoppuhr auskommst?

    Würde man eine größere Fallhöhe wählen, würde die Ungenauigkeit des Zeitstoppens nicht mehr so sehr ins Gewicht fallen und man könnte genauere Messwerte erhalten.

30 Tage kostenlos testen
Mit Spaß Noten verbessern
und vollen Zugriff erhalten auf

8.374

sofaheld-Level

6.601

vorgefertigte
Vokabeln

7.944

Lernvideos

37.093

Übungen

34.339

Arbeitsblätter

24h

Hilfe von Lehrer*
innen

laufender Yeti

Inhalte für alle Fächer und Klassenstufen.
Von Expert*innen erstellt und angepasst an die Lehrpläne der Bundesländer.

30 Tage kostenlos testen

Testphase jederzeit online beenden