Über 1,6 Millionen Schüler*innen nutzen sofatutor!
  • 93%

    haben mit sofatutor ihre Noten in mindestens einem Fach verbessert

  • 94%

    verstehen den Schulstoff mit sofatutor besser

  • 92%

    können sich mit sofatutor besser auf Schularbeiten vorbereiten

Sachaufgaben zur Radialkraft und Radialbeschleunigung

Du willst ganz einfach ein neues Thema lernen
in nur 12 Minuten?
Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
  • Das Mädchen lernt 5 Minuten mit dem Computer 5 Minuten verstehen

    Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.

    92%
    der Schüler*innen hilft sofatutor beim selbstständigen Lernen.
  • Das Mädchen übt 5 Minuten auf dem Tablet 5 Minuten üben

    Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.

    93%
    der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert.
  • Das Mädchen stellt fragen und nutzt dafür ein Tablet 2 Minuten Fragen stellen

    Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.

    94%
    der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.
Bewertung

Ø 5.0 / 3 Bewertungen
Die Autor*innen
Avatar
Jochen Kalt
Sachaufgaben zur Radialkraft und Radialbeschleunigung
lernst du in der 9. Klasse - 10. Klasse - 11. Klasse

Sachaufgaben zur Radialkraft und Radialbeschleunigung Übung

Du möchtest dein gelerntes Wissen anwenden? Mit den Aufgaben zum Video Sachaufgaben zur Radialkraft und Radialbeschleunigung kannst du es wiederholen und üben.
  • Erstelle die Skizze zur Aufgabe Hammerwerfer.

    Tipps

    Ohne die Radialkraft würde sich die Kugel geradlinig in Richtung der Tangentialgeschwindigkeit bewegen.

    Radialkraft und Radialbeschleunigung wirken in dieselbe Richtung.

    Lösung

    Ein Körper der Masse $m$ bewegt sich auf einer Kreisbahn mit dem Radius $r$. Seine Geschwindigkeit $v_{tang}$ liegt tangential am Kreis an.

    Ohne Krafteinwirkung würde sich der Körper auf einer geraden Linie bewegen.

    Damit sich der Körper auf einer Kreisbahn bewegt, muss auf ihn eine Kraft in Richtung Kreismittelpunkt wirken. Diese wird als Radialkraft $F_R$ bezeichnet. Die Radialkraft ist umso größer, je schneller sich der Körper bewegt und je schwerer er ist. Außerdem ist sie bei kleineren Kreisen größer.

    Demnach liegt auch eine Beschleunigung vor, die Radialbeschleunigung $a_R$. Sie wirkt ebenfalls in Richtung Kreismittelpunkt und ist ebenfalls von der Geschwindigkeit des Körpers und vom Kreisbahnradius abhängig. Sie bewirkt aber nicht zwangsläufig eine Änderung des Geschwindigkeitsbetrages. In jedem Fall ändert sie jedoch beständig die Bewegungsrichtung des Körpers, der sich aufgrund seiner Trägheit sonst geradlinig bewegen würde.

  • Berechne die auftretende Radialkraft beim Hammerwurf.

    Tipps

    Beachte bei den gegebenen Größen die Einheiten.

    Wie lautet das Formelzeichen für die gesuchte Größe?

    Welches Ergebnis erhältst du bei der Berechnung?

    Lösung

    Die Aufgabe zum Hammerwerfer verdeutlicht noch einmal den typischen Aufbau eines Lösungsweges.

    Aus einer Sachaufgabe werden zunächst die gegebenen und die gesuchten Größen herausgefiltert. Außerdem kann es sinnvoll sein, eine Skizze wie in der vorangegangenen Aufgabe zu erstellen. Sie verdeutlicht den Sachverhalt noch einmal und hilft häufig sehr gut beim Finden des Lösungsansatzes.

    In diesem Beispiel wird als Lösungsansatz eine Formel benötigt, die dir bekannt ist und auch nicht mehr umgestellt werden muss. Daher können die gegebenen Größen direkt eingesetzt und die gesuchte Größe berechnet werden. Dabei solltest du auch immer ein Auge auf die Einheiten haben. Das ist keine Schikane, sondern hat schon oft Fehler im Lösungsansatz oder beim Einsetzen der Größen aufgedeckt. Vor der Berechnung kann es auch erforderlich sein, die notwendige Formel aus anderen Formeln herzuleiten oder sie umzustellen.

    Der Antwortsatz fasst die Überlegungen und Ergebnisse des Lösungsweges noch einmal kurz und prägnant zusammen. Er macht deutlich, ob der Kontext der Aufgabe richtig eingeordnet wurde.

  • Berechne die Radialkraft, die einen Satelliten in 1 000 Kilometern Flughöhe über der Erdoberfläche auf seiner Bahn hält.

    Tipps

    Verdeutliche dir den Sachverhalt in einer Skizze.

    Notiere die gegebenen und die gesuchten Größen.

    Setze die Zahlenwerte in die Formel zur Berechnung der gesuchten Größe ein.

    Beachte: Als Wert für den Radius darfst du nicht die Flughöhe einsetzen. Zum Rechnen muss dieser Wert außerdem im Metern angegeben werden.

    Lösung

    Gegeben:

    $v_{tang}=7~360 \frac ms$

    $m=500~kg$

    $r=7~370~km=7~370~000~m$

    Gesucht:

    $F_R$

    Lösung:

    $F_R=\frac {m\cdot v_{tang}^2} {r}=$

    $\frac {500~kg\cdot (7~360 \frac ms)^2} {7~370~000~m} \approx 3~680\frac {kg\cdot m} {s^2}=3~680~N$

    Der Satellit wird von einer Radialkraft in Höhe von rund 3 680 Newton auf seiner Kreisbahn um die Erde gehalten. Er befindet sich dabei in einer Höhe von 1 000 Kilometern. Die Radialkraft entspricht dabei der Gravitationskraft, die die Erde auf den Satelliten in seiner Flughöhe ausübt. Ohne diese würde sich der Satellit geradlinig durch das All bewegen.

  • Berechne die Geschwindigkeit, die ein geostationärer Satellit auf seiner Umlaufbahn besitzen muss.

    Tipps

    Welche Geschwindigkeit ist hier gesucht und wie kann sie berechnet werden?

    Verwende die Formel zur Berechnung der Radialbeschleunigung und stelle sie nach der Tangentialgeschwindigkeit um.

    Lösung

    Auf einer geostationären Bahn über dem Äquator bewegen sich Satelliten mit einer Geschwindigkeit von rund $3\frac {km} {s}$. Nur bei dieser Geschwindigkeit bleiben die Satelliten auf der gewünschten Bahn.

    Dadurch wird erreicht, dass die Satelliten einmal an einem kompletten Tag diese Bahn umlaufen. Dadurch besitzen sie dieselbe Winkelgeschwindigkeit wie die Erde und können immer über dem gleichen Punkt der Erdoberfläche stehen.

  • Gib die Formeln zur Berechnung von Radialkraft und Radialbeschleunigung an.

    Tipps

    Welche Größe tritt in den Formeln zu Radialkraft und Radialbeschleunigung im Quadrat auf?

    Welcher Zusammenhang besteht zwischen Kraft und Beschleunigung allgemein?

    Das zweite Newtonsche Axiom lautet: $F=m\cdot a$.

    Was bedeutet das für die Formeln von Radialkraft und Radialbeschleunigung?

    Lösung

    Die Radialkraft, die einen Körper auf eine Kreisbahn zwingt, ist von der Masse des Körpers, dessen Geschwindigkeit sowie vom Radius der Kreisbahn abhängig: Je größer Masse und Geschwindigkeit, desto größer die Kraft. Desto größer der Radius, desto kleiner die Kraft. Dabei fließt die Geschwindigkeit des Körpers im Quadrat in die Formel mit ein. Sie hat also einen sehr starken Einfluss auf die Kraft. Verdoppelt sie sich beispielsweise, so muss die vierfache Kraft wirken.

    Die Formel für die Radialbeschleunigung ergibt sich direkt aus der Formel für die Radialkraft: Nach dem zweiten Newtonschen Axiom muss wegen $F=m\cdot a$ lediglich die Masse aus der Formel für die Kraft gekürzt werden.

  • Erläutere, wie sich der Radius in der Denkaufgabe verhält.

    Tipps

    Argumentiere mit der Formel zur Berechnung der Radialkraft.

    Ist die Radialkraft für den zweiten Körper dreimal so hoch, so muss sich die andere Gleichungsseite insgesamt auch um den Faktor 3 ändern.

    Welcher Faktor muss demnach unter Berücksichtigung der anderen Tangentialgeschwindigkeit vor dem Radius stehen?

    Lösung

    Für den ersten und den zweiten Körper gilt allgemein:

    $F_{R1}=\frac {m \cdot {v_{tang1}^2}} {r_1}$ und

    $F_{R2}=\frac {m \cdot {v_{tang2}^2}} {r_2}$

    Außerdem gilt: $F_{R2}=3\cdot F_{R1}$ und $v_{tang2}=3\cdot v_{tang1}$ und somit auch

    $3\cdot F_{R1}=\frac {m \cdot ({3\cdot v_{tang1})^2}} {r_2}$

    $3\cdot F_{R1}=9\cdot \frac {m \cdot ({v_{tang1})^2}} {r_2}$

    $3\cdot F_{R1}=9\cdot \frac {m \cdot ({v_{tang1})^2}} {3\cdot r_1}$

    $3\cdot F_{R1}=3\cdot \frac {m \cdot ({v_{tang1})^2}} {r_1}$

    Also gilt: $r_2=3\cdot r_1$.

30 Tage kostenlos testen
Mit Spaß Noten verbessern
und vollen Zugriff erhalten auf

8.374

sofaheld-Level

6.601

vorgefertigte
Vokabeln

7.944

Lernvideos

37.093

Übungen

34.339

Arbeitsblätter

24h

Hilfe von Lehrer*
innen

laufender Yeti

Inhalte für alle Fächer und Klassenstufen.
Von Expert*innen erstellt und angepasst an die Lehrpläne der Bundesländer.

30 Tage kostenlos testen

Testphase jederzeit online beenden