30 Tage kostenlos testen:
Mehr Spaß am Lernen.

Überzeugen Sie sich von der Qualität unserer Inhalte.

Spezifische Wärmekapazität eines idealen Gases 09:51 min

Textversion des Videos

Transkript Spezifische Wärmekapazität eines idealen Gases

Hallo, ich bin euer Physik Siggi. Heute werde ich euch die 2 Arten der spezifischen Wärmekapazität eines idealen Gases darstellen. Dafür werdet ihr zunächst wiederholen, was Wärme ist, und danach verstehen, was die Wärmekapazität und die spezifische Wärmekapazität eigentlich darstellen. Letztendlich werden wir dies dann auf das ideale Gas übertragen. Zum Schluss wiederholen wir noch alle gelernten Formen. Dafür müsst ihr natürlich wissen, was ein ideales Gas ist und was Wärme ist. Außerdem solltet ihr mit molekularen Größen umgehen können. Für alles findet ihr bei mir einen Film. Im letzten Film dieser Reihe, "Wärmeenergie und innere Energie", habe ich euch erklärt, was Wärme ist. Sie ist die Energie, die von einem heißen auf einen kalten Körper übertragen wird. Zum Beispiel wird hier von der Herdplatte zum Wasser Energie übertragen. Diese Energie ist Wärmeenergie. Das kalte Wasser wird warm. Wie viel Wärme Q ist jedoch nötig, um das Wasser um ΔT zu erwärmen? Wir wissen, dass die Wärme proportional zur Temperaturerhöhung ist. Steigt die zugeführte Wärme, so steigt auch die Temperatur. Die Wärmekapazität c ist der Quotient aus der Wärme und der Temperaturänderung. Dieser ist konstant. Wollen wir mehr Wasser erwärmen, so müssen wir auch mehr Wärme hineinstecken. Zusammen gilt also: QΔT×m. Also gilt, dass die Wärme geteilt durch die Temperaturänderung und die Masse konstant bleibt, solange wir immer das gleiche Material erwärmen. Die Erfahrung zeigt nämlich, dass die Temperatur für alle Materialien unterschiedlich schnell steigt, auch wenn sie die gleiche Masse haben und ihnen die gleiche Wärme zugeführt wurde. Zum Beispiel erwärmt sich Eisen leichter als Wasser. Somit ist die obige Konstante c für alle Materialien unterschiedlich. Sie ist eine Materialeigenschaft und heißt spezifische Wärmekapazität. Ein Beispiel: 300 g Wasser muss man mit einem 1000 W starken Tauchsieder 25,2 s lang erwärmen, um es von 0 °C auf 20 °C zu erhitzen. Wie groß ist die spezifische Wärmekapazität des Wassers? Die übertragene Wärmeenergie ist in etwa die Leistung des Tauchsieders × der Zeit, also 25200 J. Die erwärmte Masse sind 300 g und der Temperaturunterschied sind 20 °C, was genau 20 K entspricht. Einsetzen und Ausrechnen bringen uns: c=4,2 J/(gK). Die spezifische Wärmekapazität von Eisen liegt dagegen bei 0,45 J/(gK). Eisen benötigt also nur 0,45 J, um 1 g um genau 1 K zu erhitzen. Wasser benötigt dagegen 4,2 J, um dieselbe Menge um dieselbe Temperatur zu erhöhen. Die spezifische Wärmekapazität beschreibt also, wie gut man ein Material erwärmen kann. Für die Interessierten: Die spezifische Wärmekapazität eines Materials ändert sich auch mit der Temperatur, jedoch so wenig, dass sie für feste Stoffe zwischen -40 °C bis 100 °C als konstant angenommen werden kann, und für flüssige Stoffe zwischen 0 °C und 40 °C etwa konstant ist. Ansonsten muss man eine Temperaturabhängigkeit beachten. Wie verhält sich die spezifische Wärmekapazität bei Gasen? Wir wissen aus dem Gasgesetz, dass eine Erwärmung eine Änderung des Drucks oder eine Änderung des Volumens des idealen Gases zur Folge hat - natürlich nur, wenn die Teilchenzahl dabei gleich bleibt. Deswegen unterscheiden wir zwischen 2 Arten der spezifischen Wärmekapazität bei idealen Gasen: erstens, wenn das Volumen des Gases beim Erwärmen gleich bleibt, und somit der Druck steigt. Dann gilt für die zugeführte Wärme das Gleiche wie im festen Körper [Q=cv×m×ΔT]. Cv deswegen, weil das Volumen v konstant bleibt. Der zweite Fall ist, wenn der Druck des Gases gleich bleibt und somit das Volumen größer wird. In diesem Fall ist die Wärmekapazität eine andere, weil das Gas noch Volumenarbeit verrichtet [Q=cp×m×ΔT]. Es verändert sich ja, und dies ist eine Form von Arbeit. Die Volumenarbeit (W) = dem Druck (p) × der Volumenänderung (ΔV). Dies könnt ihr einfach herleiten. Ihr wisst, dass die Arbeit Kraft (F) × Wegänderung (s) ist und dass Druck p = Kraft pro Fläche ist [p=F/A]. Umgestellt ist also die Kraft gleich Druck × Wegänderung [F=p×A]. Setzen wir dies ein, so erhalten wir W=p×A×Δs=p×ΔV, also Druck × Volumenänderung. Die zugeführte Wärme Q (=cp×m×ΔT) wird also sowohl in die Temperaturerhöhung (cv×m×ΔT) als auch in die Volumenarbeit (p×ΔV) gesteckt. Aus dieser letzten Erkenntnis können wir nun einen Zusammenhang zwischen beiden spezifischen Kapazitäten ermitteln. Wir wissen aus dem Gasgesetz, dass Druck × Volumenänderung = Teilchenzahl × Boltzmann-Konstante × Temperaturänderung ist [p×ΔV=N×KB×ΔT]. Die Masse des Gases ist die Masse eines Teilchens × die Teilchenzahl N. Also können wir N mit m/mi ersetzen. Setzen wir nun dies alles in unsere Gleichung ein, so können wir links und rechts durch m×ΔT teilen. Und wir erhalten: cp=cv+(KB/mi). KB/mi wird als Gaskonstante (Rs) bezeichnet, Rs ist jedoch nicht zu verwechseln mit dem R aus der Gasgleichung für molekulare Größen: p×V=n×R×T. Wir wissen, dass die universelle Gaskonstante R gleich Avogadrozahl × Boltzmann-Konstante ist [R=NA×KB]. Dies können wir umstellen. Setzen wir die Avogadrozahl in die Definition der Masse eines Teilchens ein, so erhalten wir nach Umformen, dass die spezielle Gaskonstante gleich der universellen durch die molare Masse ist. Dies bringt uns zum letzten Punkt. Man kann die spezifische Wärmekapazität auch in molekularen Größen beschreiben. Hier wird die Wärmekapazität einfach anstatt auf Masse auf die Stoffmenge bezogen, also ist sie gleich Wärme durch Stoffmenge × Temperaturänderung. Sie wird dann molare Wärmekapazität genannt. Teilen wir beide durcheinander, so erhalten wir ihren Zusammenhang: Die molare Wärmekapazität = der spezifischen × Masse durch Stoffmenge [cm=c×(m/n)], also gleich der spezifischen × molare Masse [=c×Mm]. Wir wiederholen. Die Wärmekapazität ist die zugeführte Wärme durch die Temperaturänderung. Die spezifische Wärmekapazität ist die zugeführte Wärme pro Masse und pro Temperaturänderung, also die Wärmekapazität bezogen auf die Masse. Die molare Wärmekapazität ist die zugeführte Wärme pro Mol und pro Temperaturänderung, also die Wärmekapazität bezogen auf die Stoffmenge. Der Zusammenhang zwischen molarer und spezifischer Wärmekapazität geht über die molare Masse. Beim idealen Gas gibt es 2 spezifische Wärmekapazitäten. Einerseits, wenn das Volumen konstant ist, dann gilt Q=cv×m×ΔT, andererseits, wenn der Druck konstant ist, dann gilt für die zugeführte Wärme Q=cp×m×ΔT=cv×m×ΔT+p×ΔV. Der Zusammenhang zwischen beiden ist folgender: cp=cv+Rs, wobei Rs die spezielle Gaskonstante ist und über die molare Masse mit der universellen Gaskonstante verknüpft ist. Übrigens wird der Quotient aus beiden spezifischen Wärmekapazitäten Adiabatenkoeffizient genannt. Das war's für heute. Im nächsten Film werde ich euch den 1. Hauptsatz der Wärmelehre nahebringen. Danke für die Aufmerksamkeit!

11 Kommentare
  1. Gar nichts verstanden alles viel zu kompliziert erklährt

    Von Manuela Jerxsen, vor etwa 2 Monaten
  2. ich versteh nichts, warum braucht man diese ganzen Formeln???;(((

    Von Angelinaalizee, vor mehr als 3 Jahren
  3. hat sich erledigt^^

    Von Lea Seyda, vor mehr als 5 Jahren
  4. Q ist ja Wärme
    und was ist c?

    Von Lea Seyda, vor mehr als 5 Jahren
  5. ach da unten steht schon die antwort. hat sich erledigt

    Von Lea Seyda, vor mehr als 5 Jahren
  1. 20 grad entsprechen doch garnicht 20 K
    sondern 273,15+20=293,15K

    Von Lea Seyda, vor mehr als 5 Jahren
  2. @Merabell: Dort steht NICHT, dass die Wärmekapazität von Wasser 4,2 J ist. Siggi schreibt das man eine eine Energiemenge von 4,2 J benötigt um 1g Wasser um 1K zu erwärmen.
    Erinnerst du dich an die Definition der Wärmekapazität?
    Die Wärmekapazität gibt an, wieviel Wärme man einem Stoff zuführen muss um 1g des Stoffes um 1K zu erwärmen.
    Also bedeutet Siggis Aussage nichts anderes als: Wasser hat eine Wärmekapazität von 4,2 J/(g*K).
    Lg

    Von Nikolai P., vor fast 6 Jahren
  3. Die Einheit der spezifischen Wärmekapazität ist doch J/g*K wieso steht dann da nur Joule? (3,26s)

    Von Merabell A., vor fast 6 Jahren
  4. Alles klar, macht Sinn! Danke :D

    Von Sunny 1, vor mehr als 6 Jahren
  5. @Sunny: Es handelt sich hier um eine Temperaturdifferenz. Temperaturdifferenzen haben in Kelvin und Grad Celsius den gleichen Betrag. Rechne das doch mal nach: Der Temperaturunterschied zwischen 20°C und 30°C beträgt 10°C. Wenn du jetzt die 20°C und 30°C in Kelvin umrechnest und erneut die Differenz bildest wirst du 10K erhalten!

    Von Nikolai P., vor mehr als 6 Jahren
  6. Warum sind 20°C = 20K? Das wären doch eigentlich 293,15K?

    Von Sunny 1, vor mehr als 6 Jahren
Mehr Kommentare

Spezifische Wärmekapazität eines idealen Gases Übung

Du möchtest dein gelerntes Wissen anwenden? Mit den Aufgaben zum Video Spezifische Wärmekapazität eines idealen Gases kannst du es wiederholen und üben.

  • Nenne die verschiedenen Wärmekapazitäten und Formeln, um sie zu berechnen.

    Tipps

    Die Wärmekapazität beschreibt das Verhältnis aus zugeführter Wärme und der Temperaturdifferenz.

    Die spezifische Wärmekapazität $c$ ist antiproportional zur Masse $m$.

    Die molare Wärmekapazität $c_m$ kann entweder mit der Stoffmenge $n$ oder dem Verhältnis aus molarer Masse $M_m$ und Masse $m$ ausgedrückt werden.

    Lösung

    Die Wärmekapazität entspricht dem Quotient aus der Wärme $Q$ und der Temperaturänderung $\Delta T$.

    Wenn dann mehr Masse erwärmt werden soll, muss mehr Wärme hineingesteckt werden.
    Daraus folge $Q \sim \Delta T \cdot m$. Der Proportionalitätsfaktor ist die spezifische Wärmekapazität $c$.

    Es folgt also
    $c=\frac{Q}{\Delta T \cdot m}$.

    Die spezifische Wärmekapazität bezieht sich also auf die Masse $m$.
    Die molare Wärmekapazität bezieht sich auf die Stoffmenge $n$.
    Die Formel ist dabei gleich der spezifischen Wärmekapazität, nur dass an der Stelle des $m$ ein $n$ steht.

    Diese beiden Formeln stehen in Verhältnis zueinander.
    Für den Quotienten ergibt sich:
    $\frac{c_m}{c}=\frac{m}{n} \rightarrow c_m = c\cdot \frac{m}{n} = \frac{Q \cdot M_m}{\Delta T \cdot m}$.

    Dies gilt, da der Quotient von $m$ und $n$ der molaren Masse $M_m$ entspricht.

  • Nenne Aussagen zur Wärmekapazität.

    Tipps

    Die Wärmekapazität wird mit $C$ ausgedrückt.

    Die spezifische Wärmekapazität ist in den Temperaturen, die wir gewohnt sind, ungefähr konstant. Bewegt sich die Temperatur in sehr hohen oder sehr geringen Bereichen, dann verändert sich die Wärmekapazität eines Stoffes.

    Wenn mehr Masse auf eine bestimmte Temperatur erwärmt werden soll, wird auch mehr Wärme gebraucht. Die Wärme ist also proportional zu der Masse mal der Temperaturdifferenz. Verändert sich bei größerer Masse die Proportionalitätskonstante?

    Die Einheit der spezifischen Wärmekapazität ist Joule durch Kilogramm mal Kelvin.

    Lösung

    Häufig wird die spezifische Wärmekapazität fälschlicher Weise als Konstante bezeichnet.
    In Wirklichkeit ist sie jedoch in bestimmtem Maße temperaturabhängig.

    In Bereichen zwischen $-40 ~^\circ C$ und $100 ~^\circ C$ ist die spezifische Wärmekapazität in den meisten Fällen ungefähr konstant. Werden die Temperaturen, welche in Kelvin berechnet werden, jedoch sehr hoch oder sehr niedrig, dann ist sie nicht mehr konstant.
    Somit ist die spezifische Wärmekapazität temperaturabhängig und damit ohne Zusatzbedingungen auch keine Konstante.

    Für die Einheit der spezifischen Wärmekapazität gilt:
    $[c]=\frac{J}{K \cdot kg}$
    Es wird damit angegeben, wie viel Wärmeenergie benötigt wird, um eine Masse um eine bestimmte Temperatur zu erhöhen.
    Es gilt zum Beispiel für Quarz unter Normalbedingungen:
    $c=0,8 ~\frac{kJ}{K \cdot kg}=0,8 ~\frac{J}{K \cdot g}$.
    Somit werden 0,8 Joule gebraucht, um 1 Gramm um 1 Kelvin zu erhöhen.

  • Beschreibe die Wärmekapazität von Gasen.

    Tipps

    Bei Feststoffen kann die spezifische Wärmekapazität durch das Verhältnis von zugeführter Wärme und dem Produkt aus der dabei entstehenden Temperaturdifferenz und der Masse berechnet werden.
    Was ergibt sich, wenn diese Formel nach Q umgestellt wird?

    Die spezifische Wärmekapazität bei konstantem Druck wird mit $c_p$ und die bei konstantem Volumen mit $c_v$ bezeichnet.

    Möchte man bei konstantem Druck die Wärme die für eine Temperaturänderung $\Delta T$ zugeführt werden muss, durch die spezifische Wärmekapazität $c_v$ ausdrücken, so muss man die Wärme zur Temperaturerhöhung bei konstantem Volumen und die Volumenänderungsarbeit $W$ addieren.

    Lösung

    Bei einem Festkörper gilt für die spezifische Wärmekapazität:
    $c= \frac{Q}{\Delta T \cdot m} \leftrightarrow Q=c \Delta T \cdot m$ .

    Dieselbe Formel gilt für die spezifische Wärmekapazität eines idealen Gases bei konstantem Volumen:
    $Q=c_v \Delta T \cdot m$ .

    Durch den Index wird immer die konstante Größe dargestellt. Aufgrund der idealen Gasgleichung
    $p \cdot V = N \cdot k_B \cdot T$
    stehen $p$ und $V$ in Wechselwirkung.

    Da $N\cdot k_B$ konstant ist, erhöht sich bei konstantem Volumen und einer Temperaturerhöhung der Druck.

    Wird dagegen der Druck konstant gehalten, dann muss das Volumen größer werden. Das heißt, das Gas dehnt sich aus.

    Bei Wärmezufuhr wird die zugeführte Wärme dann zum Teil in Volumenänderungsarbeit umgewandelt und erhöht zum Teil die Temperatur.
    Somit gibt es zwei Möglichkeiten, die benötigte Wärme für eine bestimmte Temperaturänderung zu berechnen. Entweder wird $c_p$ genutzt, in welche die genannten Faktoren einberechnet sind:
    $Q=c_p \cdot m \cdot \Delta T$.

    Oder es wird die Volumenänderungsarbeit und die benötigte Wärme für die Temperaturänderung bei konstantem Volumen addiert: $Q=c_v \cdot m \cdot \Delta T+W=c_v \cdot m \cdot \Delta T + p \cdot \Delta V$.

  • Berechne Veränderung der Temperatur und die Wärmekapazität bei konstantem Druck.

    Tipps

    Die zugeführte Wärme sorgt zum Teil für die Änderung der Temperatur und zum Teil für die Änderung des Volumens.

    Die zugeführte Wärme kann auch über die spezifische Wärmekapazität bei konstantem Druck dargestellt werden.

    Mit der zuvor berechneten Wärme lässt sich damit die spezifische Wärmekapazität $c_p$ berechnen.

    Lösung

    Da der Druck konstant ist, wird das Volumen größer.
    Die zugeführte Wärme setzt sich hierbei aus zwei Teilen zusammen.

    Ein Teil der Wärme bewirkt die Temperaturänderung. Der andere bewirkt die Volumenänderung.
    Somit kann die zugeführte Wärme bei der Temperaturänderung $\Delta T$ und der Volumenänderung $\Delta V$ durch
    $Q=c_v \cdot m \cdot \Delta T + p \cdot \Delta V$
    ausgedrückt werden.

    Dort werden die gegebenen Werte eingesetzt. Es ergibt sich:
    $Q=1680 ~ \frac{J}{kg\cdot K} \cdot 4 ~kg \cdot 15 ~ K + 120000 ~\frac{N}{m^2} \cdot 2 ~ m^3=100800 ~J+240000~J=340800 ~J$.

    Man kann die zugeführte Wärme aber auch über die spezifische Wärmekapazität bei konstantem Druck $c_p$ ausdrücken. Stellt man diese nach $c_p$ um, lässt sich die gesuchte Größe leicht berechnen:
    $Q=c_p \cdot m \cdot \Delta T \leftrightarrow c_p=\frac{Q}{m \cdot \Delta T}=\frac{340800 ~J}{4 ~kg \cdot 15 ~ K}=5680 ~ \frac{J}{kg\cdot K}$.

    Da in der vorigen Rechnung nicht gerundet wurde, darf das Zwischenergebnis direkt eingesetzt werden.

  • Berechne die Wärmemenge, die zugeführt werden muss, um die Temperaturänderung zu erreichen.

    Tipps

    Bei konstantem Volumen berechnet sich die Wärme die zugeführt werden muss, um die Masse $m$ um eine bestimmte Temperaturdifferenz zu erhöhen wie bei einem Feststoff.

    Ziehe die niedrigere Temperatur von der höheren ab, um die Temperaturdifferenz zu berechnen. Unterscheidet sich die Differenz in Kelvin von der in Grad?

    Setze alle gegebenen Werte ein und achte auf die richtige Einheit des Ergebnisses.

    Lösung

    Da das Volumen konstant ist, gilt:
    $Q=c_v \cdot m \cdot \Delta T$.

    In der Formel wird die Temperaturdifferenz in Kelvin angegeben. Diese unterscheidet sich jedoch nicht von der in Grad.
    Temperaturdifferenzen sind in Kelvin und in Grad gleich. Du kannst dies leicht überprüfen, indem du die Temperatur in Kelvin umrechnest und anschließend die Differenz bestimmst.
    Somit folgt für $\Delta T$:
    $\Delta T=T_2-T_1=35 ~°C - 15 ~°C=20 ~°C$ und damit auch $\Delta T=20 ~ K$.

    Dort werden die gegebenen Werte eingesetzt:
    $Q=620 ~ \frac{J}{kg \cdot K} \cdot 3,5 ~kg \cdot 20 ~ K = 43400 ~ J = 43,4 ~ kJ$ .

  • Berechne die spezifische Wärmekapazität bei konstantem Volumen.

    Tipps

    Für die zugeführte Wärme bei konstantem Druck gilt:

    Die zugeführte Wärme bei konstantem Druck kann auch mit spezifischen Wärmekapazität bei konstantem Volumen berechnet werden. Es muss dabei die Volumenänderungsarbeit berücksichtigt werden. Diese kann mithilfe der Teilchenmasse berechnet werden.

    Werden die Formeln gleichgesetzt und nach $c_v$ umgestellt, so sind alle Größen der Gleichung bekannt.

    Achte auf das richtige Runden. Ist die dritte Ziffer nach dem Komma größer als 5, dann wird aufgerundet. Ist die dritte Ziffer nach dem Komma kleiner als 5, dann wird abgerundet.

    Lösung

    Es gibt zwei Möglichkeiten die Wärme $Q$ zu berechnen, die bei einem Gas mit konstantem Druck benötigt wird, um eine Temperaturänderung $\Delta T$ zu bewirken.

    Es gilt $Q=c_p \cdot m \cdot \Delta T$.

    Ferner kann die Wärme auch über $c_v$ ausgedrückt werden. Denn bei konstantem Druck wird das Volumen größer. Die zugeführte Wärme teilt sich auf in die Wärme, die die Temperaturänderung versucht und die Volumenänderungsarbeit.

    Mit $W=p \cdot \Delta V= \frac{m}{m_i} \cdot k_B \cdot \Delta T$ folgt hier:

    $Q=c_v \cdot m \cdot \Delta T + p \cdot \Delta V =c_v \cdot m \cdot \Delta T + \frac{m}{m_i} \cdot k_b \cdot \Delta T$.

    Werden die beiden Gleichungen gleich gesetzt ergibt sich:

    $\begin{align} && c_p \cdot m \cdot \Delta T&=c_v \cdot m \cdot \Delta T + \frac{m}{m_i} \cdot k_B \cdot \Delta T \\ &\Leftrightarrow& c_p \cdot \not{m} \cdot \not{\Delta T} &= c_v \cdot \not{m} \cdot \not{\Delta T} + \frac{\not{m}}{m_i}\cdot k_B \cdot \not{\Delta T} \\ &\Leftrightarrow& c_p = c_v + \frac{k_B}{m_i} \end{align} $

    Nach $c_v$ und mit eingesetzten Zahlenwerten folgt:
    $ c_v = c_p - \frac{k_B}{m_i}=624 ~\frac{J}{kg \cdot K}-\dfrac{1,381 \cdot 10^{-23} ~ \frac{J}{K}}{8,421 \cdot 10^{-26} ~kg}\approx 460,005 ~\frac{J}{kg \cdot K} \approx 460,01 ~\frac{J}{kg \cdot K}$.