Magnetfeld von Spulen
Das Magnetfeld einer Spule beruht auf dem Konzept des stromdurchflossenen Leiters. Durch die Bündelung der Feldlinien im Zentrum entsteht ein verstärktes Feld. Das homogene Feld im Inneren entsteht durch viele dicht hintereinander liegende Leiterschleifen. Möchtest du mehr über die Berechnung und Anwendung des Magnetfelds von Spulen erfahren? Vertiefe dein Wissen hier!
- Das Magnetfeld einer Spule
- Magnetfeld einer Spule – anschauliche Herleitung
- Das Magnetfeld einer Spule
- Das Magnetfeld einer Spule berechnen

in nur 12 Minuten? Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
-
5 Minuten verstehen
Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.
92%der Schüler*innen hilft sofatutor beim selbstständigen Lernen. -
5 Minuten üben
Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.
93%der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert. -
2 Minuten Fragen stellen
Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.
94%der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.

Kräfte im Magnetfeld

Magnetfeld eines geraden, stromdurchflossenen Drahtes

Magnetfeld von Spulen

Magnetische Permeabilität µ

Lorentzkraft – Kraft auf bewegte Ladungsträger im Magnetfeld

Lorentzkraft – bewegte Ladung und Ströme im magnetischen Feld

Magnetischer Fluss Φ und magnetische Flussdichte B – Vergleich

Energie einer stromdurchflossenen Spule

Energiedichte von Feldern

Bestimmung der spezifische Ladung am Fadenstrahlrohr

Felder im Vergleich

Elektromagnete – Entdeckung und Entwicklung
Magnetfeld von Spulen Übung
-
Beschreibe, wie ein Magnetfeld eines Leiters entsteht.
TippsEin Leiter muss an eine Energiequelle angeschlossen werden.
LösungDas Magnetfeld eines Leiters entsteht durch den Fluss von elektrischem Strom durch den Leiter. Wenn elektrischer Strom durch einen Leiter fließt, dann erzeugt er ein Magnetfeld um den Leiter herum. Dieses Magnetfeld entsteht aufgrund der Bewegung der elektrischen Ladungen im Leiter.
- Ein elektrischer Strom muss durch einen Leiter fließen.
- Der Leiter muss auf eine Metallplatte gelegt werden.
- Der Leiter muss auf einen Herd gelegt werden.
- Der Leiter muss gekocht werden.
-
Erkläre, wie die Richtung des Magnetfeldes bestimmt werden kann.
TippsDer Daumen zeigt in die Richtung, in die der Strom fließt.
Die Finger zeigen die Richtung der Feldlinien.
LösungEine einfache Regel zur Bestimmung der Feldlinienrichtung ist, indem man den Daumen in die Richtung des Stromflusses zeigt und die Finger dabei die Feldrichtung verdeutlichen, indem sie sich krümmen.
1) Die Richtung der Feldlinien um einen Draht kann mit einer einfachen Regel bestimmt werden.
2) Der Daumen der linken Hand zeigt in die Richtung des Stromflusses von minus nach plus und die Finger krümmen sich in die Richtung der Feldlinien.
3) Mit der rechten Hand zeigt der Daumen von plus nach minus und die Finger krümmen sich in die Richtung der Feldlinien.
4) Die „Linke-Hand-Regel“ wird für die physikalische Stromrichtung verwendet und die „Rechte-Hand-Regel“ für die technische Stromrichtung.
-
Beschreibe, welches Material bei einem Versuch benötigt wird, um ein Magnetfeld zu erzeugen.
TippsDamit ein Strom fließen kann, braucht man eine Spannungsquelle.
Magnetfelder werden durch Ladungen erzeugt, die sich durch einen Leiter bewegen.
Überlege dir, wie das erzeugte Magnetfeld noch verstärkt werden kann.
LösungEin Magnetfeld kann aus einer Batterie, einem Kupferdraht und einem Eisennagel hergestellt werden:
Der Kupferdraht wird um den Nagel gewickelt und die beiden Enden des Drahtes werden an die Anschlüsse der Batterie angeschlossen. Wenn die Batterie angeschlossen ist, dann fließt Strom durch den Draht und erzeugt ein Magnetfeld um den Nagel, wodurch dieser zu einem Magneten wird.Diese Antworten sind also richtig:
- Nagel
- Batterie
- Kupferdraht
Diese Antworten sind also falsch:
- Holzstab
- Hanfseil
- Lampe
-
Berechne die magnetische Feldstärke der Spule.
TippsDie magnetische Feldstärke $H$ lässt sich mit der Anzahl der Windungen $N$, der Stromstärke $I$ und der Länge der Spule $l$ berechnen.
Es gilt diese Gleichung:
$H~=~\dfrac{N\cdot I}{l}$
Zur Berechnung muss noch die Länge in $\text{m}$ umgerechnet werden.
LösungUm die magnetische Feldstärke einer Spule zu berechnen, benötigst du die Länge der Spule, die Anzahl der Windungen und die Stromstärke.
Folgende Informationen sind gegeben:
- Anzahl der Windungen: $N~=~100$
- Länge der Spule: $l~=~\pu{10cm}$
- Stromstärke: $I=\pu{2A}$
Für die magnetische Feldstärke gilt diese Gleichung:
$H=\dfrac{N\cdot I}{l}$
Jetzt können die Werte eingesetzt und die magnetische Feldstärke kann berechnet werden:
$H=\dfrac{N\cdot I}{l}=\dfrac{100 \cdot \pu{2A}}{\pu{0,1m}}=\pu{{2\,000}\dfrac{A}{m}}$
Die magnetische Feldstärke beträgt:
$H=\pu{{2\,000}\dfrac{A}{m}}$
-
Sortiere die Geräte danach, ob magnetische Spulen enthalten sind oder nicht.
TippsMagnetische Spulen können verwendet werden, um elektromagnetische Felder zu erzeugen.
In einem Fön befindet sich ein Elektromotor, um die Luft zu bewegen.
In der Mikrowelle werden magnetische Spulen verwendet, um Mikrowellen zu erzeugen.
In einem Laptop wird eine magnetische Spule in der Festplatte verwendet, um Daten zu speichern und abzurufen.
LösungIn unserem Alltag gibt es viele weitere Magnetfelder, die durch technische Geräte, die magnetische Spulen enthalten, hervorgerufen werden.
Folgende Geräte enthalten magnetische Spulen:
- Fön: In einem Fön wird eine magnetische Spule als Elektromotor verwendet, um die Lüfterblätter zu drehen und so Luft zu bewegen.
- Mikrowelle: In einer Mikrowelle wird eine magnetische Spule verwendet, um Mikrowellen zu erzeugen, die die Lebensmittel erhitzen.
- Laptop: In einem Laptop wird eine magnetische Spule in der Festplatte verwendet, um Daten zu speichern und abzurufen.
Folgende Geräte enthalten keine magnetische Spulen:
- Thermometer
- Lampe
- Wasserkocher
-
Vervollständige die Aussagen über die magnetische Permeabilität $\mu$.
TippsFür die magnetische Flussdichte $B$ gilt diese Gleichung:
$B=\mu \cdot H$
Die magnetische Permeabilität $\mu$ beeinflusst die Flussdichte und somit die Durchlässigkeit eines sich in der Spule befindlichen Materials.
Betrachte den Einfluss bei kleinen und großen Werten für die magnetische Permeabilität.
LösungDie magnetische Permeabilität $\mu$ ist eine vom Material abhängige Konstante und gibt an, wie stark sich ein Magnetfeld in einem Material ausbreitet.
Die Paare bilden folgende Satzhälften:
- Die magnetische Permeabilität $\mu$ eines Materials wird durch das Verhältnis von $B$ zu $H$ des Materials definiert.
- Ein Material mit hoher magnetischer Permeabilität lässt das Magnetfeld leichter passieren.
- Ein Material mit niedriger magnetischer Permeabilität blockiert das Magnetfeld stärker.
- Die magnetische Permeabilität $\mu$ hängt von der chemischen Zusammensetzung des Materials ab.
9.360
sofaheld-Level
6.600
vorgefertigte
Vokabeln
8.212
Lernvideos
38.688
Übungen
33.496
Arbeitsblätter
24h
Hilfe von Lehrkräften

Inhalte für alle Fächer und Klassenstufen.
Von Expert*innen erstellt und angepasst an die Lehrpläne der Bundesländer.
Testphase jederzeit online beenden
Beliebteste Themen in Physik
- Temperatur
- Schallgeschwindigkeit
- Dichte
- Drehmoment
- Transistor
- Lichtgeschwindigkeit
- Elektrische Schaltungen – Übungen
- Galileo Galilei
- Rollen- Und Flaschenzüge Physik
- Radioaktivität
- Aufgaben zur Durchschnittsgeschwindigkeit
- Lorentzkraft
- Beschleunigung
- Gravitation
- Ebbe und Flut
- Hookesches Gesetz Und Federkraft
- Elektrische Stromstärke
- Elektrischer Strom Wirkung
- Reihenschaltung
- Ohmsches Gesetz
- Freier Fall
- Kernkraftwerk
- Was sind Atome
- Aggregatzustände
- Infrarot, Uv-Strahlung, Infrarot Uv Unterschied
- Isotope, Nuklide, Kernkräfte
- Transformator
- Lichtjahr
- Si-Einheiten
- Fata Morgana
- Gammastrahlung, Alphastrahlung, Betastrahlung
- Kohärenz Physik
- Mechanische Arbeit
- Schall
- Schall
- Elektrische Leistung
- Dichte Luft
- Ottomotor Aufbau
- Kernfusion
- Trägheitsmoment
- Heliozentrisches Weltbild
- Energieerhaltungssatz Fadenpendel
- Linsen Physik
- Ortsfaktor
- Interferenz
- Diode und Photodiode
- Wärmeströmung (Konvektion)
- Schwarzes Loch
- Frequenz Wellenlänge
- Elektrische Energie