Magnetfeld eines geraden, stromdurchflossenen Drahtes

in nur 12 Minuten? Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
-
5 Minuten verstehen
Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.
92%der Schüler*innen hilft sofatutor beim selbstständigen Lernen. -
5 Minuten üben
Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.
93%der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert. -
2 Minuten Fragen stellen
Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.
94%der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.

Kräfte im Magnetfeld

Magnetfeld eines geraden, stromdurchflossenen Drahtes

Magnetfeld von Spulen

Magnetische Permeabilität µ

Lorentzkraft – Kraft auf bewegte Ladungsträger im Magnetfeld

Lorentzkraft – bewegte Ladung und Ströme im magnetischen Feld

Magnetischer Fluss Φ und magnetische Flussdichte B – Vergleich

Energie einer stromdurchflossenen Spule

Energiedichte von Feldern

Bestimmung der spezifische Ladung am Fadenstrahlrohr

Felder im Vergleich

Elektromagnete – Entdeckung und Entwicklung
Magnetfeld eines geraden, stromdurchflossenen Drahtes Übung
-
Gib die Wirkung eines stromdurchflossenen Drahtes auf eine Kompassnadel wieder.
TippsWenn kein Strom durch den Draht fließt, dann zeigt die Kompassnadel in Richtung des magnetischen Nordpols der Erde.
LösungDer Däne Hans Christian Oersted machte 1820 eine merkwürdige Entdeckung. Sobald Strom durch einen Draht auf seinem Experimentiertisch floss, spielte sein Kompass verrückt. Oersted machte einige Versuche und entdeckte so das magnetische Feld eines elektrischen Stromes. Er stellte eine Kompassnadel parallel zu einem geraden Draht auf. Solange kein Strom fließt, bewegt sich die Kompassnadel nicht und zeigt zum magnetischen Nordpol der Erde. Sobald Strom fließt, ensteht ein Magnetfeld und die Kompassnadel richtet sich senkrecht zum Draht aus. Wenn der Strom umgepolt wird, dann richtet sich auch die Kompassnadel genau in die andere Richtung aus.
-
Beschreibe die magnetischen Feldlinien eines stromdurchflossenen Drahtes.
TippsFeldlinien veranschaulichen die von einem Feld auf einen Probekörper ausgeübte Kraft.
LösungMit Hilfe einer Kompassnadel lässt sich das magnetische Feld um einen stromdurchflossenen Draht herausfinden. Die Kompassnadel richtet sich innerhalb des Magnetfeldes immer so aus, dass sie entlang der Feldlinien liegt. Es zeigt sich, dass der Draht Feldlinien in der Form von konzentrischen Kreisen ausbildet. Wenn der Strom im Draht umgepolt wird, dann zeigen auch die Feldlinien in die entgegengesetzte Richtung.
-
Bestimme die Richtung der Feldlinien.
TippsEs gilt die physikalische Stromrichtung. Die Elektronen bewegen sich vom Minus- zum Pluspol.
In diesem Fall muss die Linke-Hand-Regel verwendet werden.
LösungZu sehen ist eine rechteckige Leiterschleife, die an einer Stromquelle angeschlossen ist. Die Flussrichtung ist markiert und führt vom Minus- zum Pluspol. Da also die physikalische Stromrichtung verwendet wird, kann die Linke-Hand-Regel verwendet werden um die Richtung der magnetischen Feldlinien zu ermitteln. Dazu wird der Daumen der linken Hand in Stromrichtung gehalten, wobei die anderen Finger eingeklappt sind und zur Faust geballt sind. Die Fingerspitzen zeigen uns nun die magnetischen Feldlinien an.
-
Berechne die magnetische Feldstärke.
TippsVerwende die Formel zur Bestimmung der magnetischen Feldstärke um einen stromdurchflossenen Leiter.
Die Formel lautet: $\begin{align} H=\frac{I}{2\pi \cdot r} \end{align}$.
LösungDie Formel zur Berechnung der Feldstärke $H$ um einen stromdurchflossenen Leiter lautet:
$\begin{align} H=\frac{I}{2\pi \cdot r} \end{align}$
$I$ ist dabei die Stromstärke und $r$ der Radius und somit der Abstand zum Draht. Wir setzen ein:
$\begin{align} H &=\frac{2\,A}{2\pi \cdot 0,15\,m}\\ &\approx 2,12 \frac{A}{m} \end{align}$
-
Gib an, welche Aussagen über die Linke-Hand-Regel stimmen.
TippsBei der Linken-Hand-Regel wird der Daumen ausgestreckt, während die übrigen Finger zur Faust geballt werden.
LösungWenn die physikalische Stromrichtung verwendet wird, dann dient die Linke-Hand-Regel der Bestimmung der magnetischen Feldlinien. Der Daumen der linken Hand zeigt in Richtung des elektrischen Stroms. Die Finger simulieren nun die Feldlinien, die als konzentrische Kreise um den stromdurchflossenen Leiter verlaufen.
-
Berechne die erforderliche Stromstärke.
TippsVerwende die Formel der magnetischen Feldstärke um einen stromdurchflossenen Leiter.
Die Formel zur Bestimmung der magnetischen Feldstärke lautet: $\begin{align} H=\frac{I}{2 \pi \cdot r} \end{align}$.
Vergiss nicht die Einheit (kA) anzugeben.
LösungDie Formel zur Bestimmung der magnetischen Feldstärke lautet:
$\begin{align} H=\frac{I}{2 \pi \cdot r} \end{align}$
Umgestellt nach $I$ und die Werte eingesetzt ergibt sich:
$\begin{align} I &=H \cdot 2 \pi \cdot r\\ &\Rightarrow 2000000 \, \frac{A}{m} \cdot 2 \pi \cdot 0,02 \, m \\ &= 251327 \,A \\ &\approx 251,33 \, kA\\ \end{align}$
Wie du siehst, benötigt ein MRT einen sehr hohen Strom.
9.378
sofaheld-Level
6.600
vorgefertigte
Vokabeln
8.226
Lernvideos
38.691
Übungen
33.496
Arbeitsblätter
24h
Hilfe von Lehrkräften

Inhalte für alle Fächer und Klassenstufen.
Von Expert*innen erstellt und angepasst an die Lehrpläne der Bundesländer.
Testphase jederzeit online beenden
Beliebteste Themen in Physik
- Temperatur
- Schallgeschwindigkeit
- Dichte
- Drehmoment
- Transistor
- Lichtgeschwindigkeit
- Elektrische Schaltungen – Übungen
- Galileo Galilei
- Rollen- Und Flaschenzüge Physik
- Radioaktivität
- Aufgaben zur Durchschnittsgeschwindigkeit
- Lorentzkraft
- Beschleunigung
- Gravitation
- Ebbe und Flut
- Hookesches Gesetz Und Federkraft
- Elektrische Stromstärke
- Elektrischer Strom Wirkung
- Reihenschaltung
- Ohmsches Gesetz
- Freier Fall
- Kernkraftwerk
- Was sind Atome
- Aggregatzustände
- Infrarot, Uv-Strahlung, Infrarot Uv Unterschied
- Isotope, Nuklide, Kernkräfte
- Transformator
- Lichtjahr
- Si-Einheiten
- Fata Morgana
- Gammastrahlung, Alphastrahlung, Betastrahlung
- Kohärenz Physik
- Mechanische Arbeit
- Schall
- Schall
- Elektrische Leistung
- Dichte Luft
- Ottomotor Aufbau
- Kernfusion
- Trägheitsmoment
- Heliozentrisches Weltbild
- Energieerhaltungssatz Fadenpendel
- Linsen Physik
- Ortsfaktor
- Interferenz
- Diode und Photodiode
- Wärmeströmung (Konvektion)
- Schwarzes Loch
- Frequenz Wellenlänge
- Elektrische Energie