Jetzt 30 Tage gratis testen & in der Schule richtig durchstarten!

Mit unseren lustigen Videos & Übungen motiviert Wissenslücken schließen.

Zweite binomische Formel

Bewertung

Ø 4.1 / 26 Bewertungen

Die Autor/-innen
Avatar
Team Digital

Zweite binomische Formel

lernst du in der 7. Klasse - 8. Klasse - 9. Klasse - 10. Klasse

Beschreibung Zweite binomische Formel

Nach dem Schauen dieses Videos wirst du in der Lage sein, die zweite binomische Formel anzuwenden und Differenzenquadrate mit ihrer Hilfe umzuformen.

Zunächst lernst du, was die zweite binomische Formel eigentlich ist. Anschließend erfährst du, wie du sie dir geometrisch vorstellen kannst. Abschließend lernst du, wie man sie in einem gegebenen Differenzenquadrat anwendet.

Lerne, wie du dich mit Hilfe der zweiten binomischen Formel besser im Mathe-Dschungel zurechtfindest.

Das Video beinhaltet Schlüsselbegriffe, Bezeichnungen und Fachbegriffe wie binomische Formeln, 2. binomische Formel, Differenz, Quadrat, ausklammern und ausmultiplizieren.

Bevor du dieses Video schaust, solltest du bereits wissen, wie man Terme ausmultipliziert und was das Quadrat eines Terms ist.

Nach diesem Video wirst du darauf vorbereitet sein, auch die dritte binomische Formel zu lernen.

Transkript Zweite binomische Formel

Die Welt ist ein Mathe-Dschungel. Überall Mathematik! Es gibt keinen Weg hinaus! Aber manches in der Mathematik taucht immer wieder auf. Dann weißt du: Okay, das kenne ich schon! Da weiß ich, was ich zu tun habe! So kannst du deinen Weg durch den Mathedschungel erheblich beschleunigen. Und die zweite binomische Formel hilft dir dabei. Bevor wir uns aber mit dieser beschäftigen, wiederholen wir den allgemeinen Fall des Ausmultiplizierens zweier Differenzen: Wenn wir die rechte Klammer als einfachen Faktor auffassen, können wir die linke Klammer ausmultiplizieren. Den Minuenden in der entstandenen Differenz dürfen wir ganz normal ausklammern. Beim Subtrahenden müssen wir etwas aufpassen, denn hier rechnen wir Minus mal Minus. Deshalb taucht hier im Ergebnis ein Plus auf. Sehen wir uns diese Rechnung noch einmal näher an: Wir haben einmal den Minuenden der ersten Klammer mit Minuend und Subtrahend der zweiten Klammer verrechnet. Dasselbe haben wir auch mit dem Subtrahenden der ersten Klammer getan. Auch so kommt man auf das Ergebnis. Dann können wir uns jetzt die zweite binomische Formel anschauen: Da multiplizieren wir aber nicht unterschiedliche Differenzen, sondern die gleichen. Das können wir auch als Quadrat schreiben. Auch hier können wir die Klammern auflösen, indem wir den Minuenden der ersten Klammer mit Minuend und Subtrahend der zweiten Klammer verrechnen. Dasselbe machen wir auch mit dem Subtrahenden der ersten Klammer. Das sieht dann so aus. Auch hier müssen wir auf die Vorzeichen achten. Die Multiplikation der zwei Minuenden erzeugt ein positives Vorzeichen. Bei den Subtrahenden haben wir jeweils ein negatives Vorzeichen. Minus mal Minus ergibt Plus, also steht vor 'b Quadrat' ein Plus. Bei den gemischten Produkten haben wir jeweils nur ein negatives Vorzeichen. Plus mal Minus ergibt Minus, also erhalten die gemischten Produkte negative Vorzeichen. Hier können wir noch etwas zusammenfassen. Dann haben wir die zweite binomische Formel hergeleitet: in Klammern' a minus b 'zum Quadrat' ist gleich a Quadrat' minus '2 a b' plus 'b Quadrat'. Wir können uns die zweite binomische Formel auch geometrisch vorstellen: Dazu betrachten wir dieses Quadrat, mit der Seitenlänge 'a'. Das wird um diese zwei deckungsgleichen Rechtecke mit den Seitenlängen 'a' und 'b', verkleinert. Diese zwei Rechtecke überschneiden sich in diesem Quadrat mit der Seitenlänge 'b'. Das verkleinerte Quadrat hat nun den Flächeninhalt 'in Klammern' a minus b 'zum Quadrat'. Diese Fläche kann man aber auch angeben, indem wir vom großen Quadrat mit der Fläche 'a Quadrat' ausgehen. Diese beiden Rechtecke sind deckungsgleich und haben zusammen die Fläche 'a mal b' mal 2. Das ziehen wir von 'a Quadrat' ab. Die Rechtecke überschneiden sich aber in diesem Quadrat mit der Fläche 'b Quadrat'. Weil wir das nun doppelt abgezogen haben, müssen wir es nun noch einmal addieren. Auch so kommen wir also auf die zweite binomische Formel. Sehen wir uns dazu noch ein Beispiel an: Wir können den Term umformen, indem wir das Quadrat ausschreiben. Die Multiplikation der zwei Minuenden bzw. der zwei Subtrahenden erzeugt positive Vorzeichen. Die anderen Produkte haben dagegen negative Vorzeichen. Hier können wir noch etwas zusammenfassen. Dann erhalten wir das Ergebnis. Das können wir nicht weiter vereinfachen. Wenn wir aber die zweite binomische Formel kennen, können wir uns das Leben vereinfachen. Wir vergleichen den Term direkt mit der zweiten binomischen Formel und schreiben das Ergebnis einfach hin. 4x entspricht dabei dem a und 18y dem b. 4 x' 'zum Quadrat' ist 16 'x Quadrat' 2 mal '4 x' mal '18 y' ist '144 x y' und '18 y' 'zum Quadrat' ist 324 'y Quadrat'. Fassen wir das noch einmal zusammen: Wir multiplizieren zwei Differenzen miteinander, indem wir die Glieder der einen Klammer mit den Gliedern der anderen Klammer multiplizieren. Das wird dann so ausgeführt. Haben wir ein Differenzenquadrat gegeben, können wir das so umschreiben. Dann können wir das genauso ausmultiplizieren und erhalten die zweite binomische Formel. Präge sie dir gut ein, dann wirst du sie immer gleich erkennen. Am besten merkst du sie dir in Quadrat-Schreibweise, in faktorisierter Schreibweise und in ihrer ausmultiplizierten Form. Wenn du das geschafft hast, kommst du auch in den Tiefen des Mathedschungels schnell voran.

4 Kommentare

4 Kommentare
  1. super gemacht😉

    Von Till Ritter, vor 3 Monaten
  2. ich muss sehr dringend sagen, dass ich sehr gerne Hünchen mag

    Von Sabine Kunzfeld, vor etwa einem Jahr
  3. Bitte beschreibe genauer, was du nicht verstanden hast. Gib beispielsweise die konkrete Stelle im Video mit Minuten und Sekunden an. Gerne kannst du dich auch an den Fach-Chat wenden, der von Montag bis Freitag zwischen 17-19 Uhr für dich da ist.
    Ich hoffe, dass wir dir weiterhelfen können.
    Liebe Grüße aus der Redaktion

    Von Albrecht Kröner, vor mehr als einem Jahr
  4. wo bleibt das minus Zeichen

    Von Heinzbuser3, vor mehr als einem Jahr

Zweite binomische Formel Übung

Du möchtest dein gelerntes Wissen anwenden? Mit den Aufgaben zum Video Zweite binomische Formel kannst du es wiederholen und üben.
  • Beschrifte die Abbildung zur $2.$ binomischen Formel.

    Tipps

    $a \cdot a = a^2$

    und

    $-ab-ab=-2ab$

    Verringert man die Seite $a$ um die Länge $b$, dann hat die verkürzte Seite die Länge $a-b$.

    Lösung

    Die $2.$ binomische Formel lautet:

    $(a-b)^2 = a^2 - 2\cdot a \cdot b + b^2$.

    Geometrisch kann man sie folgendermaßen herleiten:

    In ein Quadrat der Seitenlänge $a$ sind zwei Rechtecke einbeschrieben mit der Fläche $a \cdot b$. Diese werden von der Fläche $a^2$ abgezogen. Da nun jedoch zweimal die Fläche $b^2$ abgezogen wurde, muss diese Fläche einmal wieder addiert werden. Somit erhält man ein Quadrat mit der Fläche $(a-b)^2$.

  • Vervollständige die Gleichungen.

    Tipps

    Um den Term $(x+y) \cdot z$ zu bestimmen, multiplizierst du jeden Summanden in der Klammer einzeln mit dem Faktor $z$ und summierst die Produkte:

    $(x + y) \cdot z = x \cdot z + y \cdot z$.

    Das Quadrat $(a+b)^2$ kannst du ausrechnen, indem du es zu $(a+b) \cdot (a+b)$ umschreibst und ausmultiplizierst:

    $(a+b)^2 = (a+b) \cdot (a+b) = a^2 + 2ab + b^2$.

    Beachte beim Ausmultiplizieren von Differenzen die Regel:

    Minus mal minus ergibt plus.

    Lösung

    Du kannst die Terme vergleichen, indem du alle Klammern ausmultiplizierst. Dazu musst du jedes Glied in der Klammer des ersten Faktors mit jedem in der Klammer des zweiten Faktors multiplizieren und diese Produkte addieren. Bei Differenzen in den Klammern musst du die Regel minus mal minus ergibt plus und minus mal plus ergibt minus beim Multiplizieren beachten.

    Multiplizierst du das Quadrat $(a-b)^2$ aus, so erhältst du die zweite binomische Formel:

    $(a-b)^2 = (a-b) \cdot (a-b) = a^2-2ab+b^2$

    Diese Formel kannst du auch verwenden, um die Paare zu finden.

    Auf diese Weise erhältst du folgende Gleichungen:

    • $(a-b) \cdot (c-d) = a \cdot c - a \cdot d - b \cdot c + b \cdot d$
    • $(a-b)^2 = a^2 - a \cdot b - b \cdot a + b^2$
    • $(4x -18y)^2 = 16x^2-144xy+324y^2$
    • $-b \cdot (c-d) = -b \cdot c + b \cdot d$
    • $-b \cdot (a-b) = -b \cdot a +b^2$
  • Berechne die Quadrate.

    Tipps

    Die zweite binomische Formel erhältst du, indem du das Produkt $(a-b)^2 = (a-b) \cdot (a-b)$ ausmultiplizierst und gleichartige Terme zusammenfasst.

    Nach der zweiten binomischen Formel gilt:

    $(b-a)^2 = b^2 - 2ba + a^2$.

    Beachte, dass der Koeffizient des gemischten Terms das Doppelte des Produktes von Subtrahend und Minuend ist.

    Lösung

    Die zweite binomische Formel erhältst du, indem du das Quadrat einer Differenz termweise ausmultiplizierst und dann gleichartige Terme zusammenfasst:

    $(a-b)^2 = (a-b) \cdot (a-b) = a \cdot a + a \cdot (-b) + (-b) \cdot a + (-b) \cdot (-b) = a^2 - 2ab + b^2$.

    Mit dieser Formel findest du folgende Zuordnungen:

    • $(15x-7y)^2 = 15^2\cdot x^2 - 2\cdot 15x \cdot 7y + 7^2 \cdot y^2 = 225x^2 - 210xy +49y^2$
    • $(9x-11y)^2 = 81x^2 - 198 xy +121y^2$
    • $(12y-8x)^2 = 144y^2 - 192xy + 64x^2$
    • $(8y-7x)^2 = 64y^2 - 112xy + 49x^2$
  • Prüfe die Gleichungen.

    Tipps

    Multipliziere das Quadrat $(a-b-c)^2$ aus und fasse gleiche Terme zusammen, um die Formel zu überprüfen.

    Multiplizierst du das Produkt aus $(x-y)$ und $(y-x)$ aus, so bleibt kein Term übrig, in dem sowohl $x$ als auch $y$ als Faktoren vorkommen.

    Lösung

    Du kannst die Wegweiser überprüfen, indem du die Klammern ausmultiplizierst. Dann findest du heraus, dass folgende Gleichungen richtig sind:

    • $(-b+a)^2 = a^2-2ab+b^2$.
    Denn dies ist die zweite binomische Formel.
    • $(a-b-c)^2 = a^2+b^2+c^2-2ab+2bc-2ac$.
    Denn durch Ausmultiplizieren erhältst du:

    $\begin{align*} (a-b-c)^2 &= (a-b-c) \cdot (a-b-c) \\ &= a \cdot (a-b-c) - b \cdot (a-b-c) - c \cdot (a-b-c) \\ &= a^2 -ab -ac -ba +b^2 +bc -ca +cb +c^2 \\ &= a^2 + b^2 + c^2 - 2ab + 2bc -2ac \end{align*}$

    • $(b^2-b)^2 = b^4-2b^3+b^2$.
    Dies ist eine Anwendung der zweiten binomischen Formel mit $a = b^2$, denn:

    $a^2 = (b^2)^2 = b^4$ und $2ab = 2 \cdot b^2 \cdot b = 2b^3$.

    Folgende Gleichungen dagegen sind falsch:

    • $(a+b)^2 \neq a^2-2ab+b^2$, denn:
    $(a+b)^2 = (a+b) \cdot (a+b) = a^2 + ab + ba + b^2 = a^2 + 2ab + b^2$.
    • $(a-b) \cdot (b-a) \neq a^2-2ab+b^2$.
    Denn Ausmultiplizieren ergibt: $(a-b) \cdot (b-a) = ab -a^2 -b^2 +ba = -a^2 + 2ab - b^2$.

    • $(-a+b)^2 \neq - a^2 +2ab-b^2$.
    Denn nach der zweiten binomischen Formel erhältst du hier:

    $(-a+b)^2 = (b-a)^2 = b^2 -2ba + a^2 = a^2 -2ab + b^2$.

  • Berechne die Terme.

    Tipps

    Multipliziere jeden Summanden, Subtrahenden und Minuenden in der Klammer mit dem Faktor außerhalb der Klammer.

    Beachte bei Differenzen in der Klammer genau die Vorzeichen und die Regel minus mal minus ergibt plus und plus mal minus ergibt minus.

    Multiplizierst du den Term $x$ mit der Differenz $(y-z)$, so nutzt du das Distributivgesetz und erhältst:

    $x \cdot (y-z) = x \cdot y + x \cdot (-z) = x \cdot y - x \cdot z$.

    Bsp.: $x \cdot x = x^2$

    Lösung

    Ist bei einem Produkt einer der Faktoren eine Klammer mit einer Summe oder Differenz, so kannst du das Produkt ausrechnen, indem du die Klammer ausmultiplizierst: Du multiplizierst dazu den Faktor außerhalb der Klammer mit jedem Glied in der Klammer und summierst diese Produkte. Steht in der Klammer eine Differenz, so musst du die Vorzeichen beachten: $a \cdot (b-c)$ multiplizierst du, indem du die Produkte $a \cdot b$ und $a \cdot (-c)$ addierst. Dabei kannst du den Summanden $a \cdot (-b)$ durch $-ac$ ersetzen und erhältst:

    $a \cdot (b-c) = a\cdot b +a\cdot(-c)= ab -ac$.

    Tritt sowohl in der Klammer als auch außerhalb der Klammer ein negatives Vorzeichen auf, so musst du beim Multiplizieren die Regel minus mal minus ergibt plus beachten.

    Wenn du auf diese Weise alle Klammern ausmultiplizierst, so erhältst du folgende Gleichungen:

    • $a \cdot (c-d) = ac - ad$
    • $-b \cdot (a-b) = -ab + b^2$
    • $4x \cdot (4x-18y) = 16x^2 - 72xy$
    • $-b \cdot (c-d) = -bc + bd$
    • $-18y \cdot (4x-18y) = -72xy + 324y^2$
  • Wende die $2$. binomische Formel rückwärts an.

    Tipps

    Bsp.:

    $25a^2-20ab+4b^2=(5a-2b)^2$

    Es gilt: $-154z+49z^2+121 = 121-154z+49z^2$.

    Lösung

    In diesem Fall wird die $2.$ binomische Formel verwendet, um Terme zu faktorisieren. Zur Probe kann der faktorisierte Term stets ausmultipliziert werden.

    Somit ergeben sich folgende Lösungen:

    • $a^2-6a+9 = (\underline{a}-\underline{3})^2$
    • $4x^2-4x+1 = (\underline{2}x-\underline{1})^2$
    • $9a^2-12ab+4b^2 = (\underline{3}a-\underline{2}b)^2$
    • $16x^2-72xy+81y^2 = (\underline{4}x-\underline{9}y)^2$
    • $-154z+49z^2+121 = (\underline{11}-\underline{7}z)^2$. Hier hilft es, den Ausgangsterm umzuformen, um ihn in die typische Form der $2.$ binomischen Formel zu bringen. Es gilt nämlich: $-154z+49z^2+121 = 121-154z+49z^2$.
30 Tage kostenlos testen
Mit Spaß Noten verbessern
Im Vollzugang erhältst du:

10.896

Lernvideos

44.418

Übungen

39.015

Arbeitsblätter

24h

Hilfe von Lehrer/
-innen

running yeti

In allen Fächern und Klassenstufen.

Von Expert/-innen erstellt und angepasst an die Lehrpläne der Bundesländer.

30 Tage kostenlos testen

Testphase jederzeit online beenden