Zweistufiges Zufallsexperiment ohne Beachtung der Reihenfolge – ohne Zurücklegen
Zweistufige Zufallsexperimente ohne Zurücklegen und Reihenfolge verstehen: Erfahre, wie Baumdiagramme alle Ergebnisse veranschaulichen, wiederhole die Pfadregeln und berechne Wahrscheinlichkeiten. Entdecke wichtige Begriffe wie Elementarereignis und die erste/ zweite Pfadregel. Neugierig geworden? Dies und vieles mehr erwarten dich im folgenden Video!

in nur 12 Minuten? Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
-
5 Minuten verstehen
Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.
92%der Schüler*innen hilft sofatutor beim selbstständigen Lernen. -
5 Minuten üben
Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.
93%der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert. -
2 Minuten Fragen stellen
Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.
94%der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.
Zweistufiges Zufallsexperiment ohne Beachtung der Reihenfolge – ohne Zurücklegen Übung
-
Benenne die korrekten Aussagen zu Zufallsexperimenten ohne Beachtung der Reihenfolge.
TippsWerden bei Betrachtung des Urnenmodells die Kugeln nach der Ziehung in die Urne zurückgelegt, sind bei jeder Ziehung die gleiche Anzahl an Kugeln in der Urne.
Sind die Wahrscheinlichkeiten der Ereignisse eines Zufallsexperiments in jeder Stufe gleich, handelt es sich um ein Experiment mit Zurücklegen.
Es muss immer zwei Kontrahenten in einem Dance-Off geben. Man kann ja nicht gegen sich selbst antreten. Das muss beim Auslosen berücksichtigt werden.
LösungDiese Aussagen sind falsch:
„Legt man nach jedem Ziehen einer Kugel aus einer Urne die Kugel wieder zurück, verändert sich die Wahrscheinlichkeit eine bestimmte Kugel zu ziehen bei jedem Durchgang.“
- Da die Kugel wieder zurückgelegt wird, sind bei jeder Ziehung die gleiche Anzahl Kugeln in der Urne. Die Wahrscheinlichkeit ist also immer gleich.
- Beim Werfen einer Münze ist die Wahrscheinlichkeit bei jedem Wurf gleich. Das entspricht einem Zufallsexperiment mit Zurücklegen.
„Bei der Darstellung mehrstufiger Zufallsexperimente sind Baumdiagramme hilfreich.“
- Mit dem Baumdiagramm kannst du mehrstufige Zufallsexperimente übersichtlich darstellen. Deshalb ist es in der Regel sehr hilfreich.
- Wird die Reihenfolge beim Auslosen nicht beachtet, dann ist es unerheblich, ob ein Kontrahent zuerst oder zuletzt gezogen wurde. Im Wettbewerb treten sie als gleichwertige Kontrahenten gegeneinander an. In diesem Sinne ist das Auslosen dann also fair. Wäre die Reihenfolge wichtig, dann könnte man auch im Wettkampf unterscheiden, ob ein Kontrahent zuerst oder zuletzt gezogen worden wäre. Das hieße aber, die Kontrahenten wären nicht gleichwertig aufgestellt und einer hätte einen Vorteil. Dann wäre der Wettkampf also unfair.
- Da Kontrahenten eines Dance-Offs nicht gegen sich selbst antreten, können beim Auslosen die Teilnehmer, die zuerst gezogen werden, nicht mehr in der zweiten Stufe der Ziehung vorkommen.
-
Ergänze die Berechnung der Wahrscheinlichkeit des Ereignisses.
TippsIn dem Pfad, in dem zuerst Lasse gezogen wird, kommt der entsprechende Buchstabe „L“ auch zuerst in der Bezeichnung der Wahrscheinlichkeit vor.
Um die Wahrscheinlichkeit eines Ereignisses, das aus mehreren Pfaden besteht, zu bestimmen, musst du die zweite Pfadregel verwenden.
Das Baumdiagramm des Zufallsexperiments sieht so aus.
LösungDen Lückentext kannst du so vervollständigen:
„Das Ereignis, in dem Lasse und Bernd gegeneinander antreten können, enthält zwei Pfade. Die Pfade unterscheiden sich in der Reihenfolge der Ziehung. Die Wahrscheinlichkeit des Pfades, in dem zuerst Lasse und anschließend Bernd gezogen wird, kannst du auch so schreiben: $P(\text{L},\text{B})$. Du berechnest sie durch:
$P(\text{L},\text{B})= \frac{1}{3} \cdot \frac{1}{2}=\frac{1}{6}$.“
- Die Wahrscheinlichkeiten entsprechen einem Zufallsexperiment ohne Zurücklegen. Da Kontrahenten eines Dance-Offs nicht gegen sich selbst antreten können, können beim Auslosen die Teilnehmer, die zuerst gezogen werden, nicht mehr in der zweiten Stufe der Ziehung vorkommen.
- Da in diesem Pfad Bernd vor Lasse gezogen wird, kommt "B" in der Bezeichnung dieser Wahrscheinlichkeit zuerst vor.
(...) Die Wahrscheinlichkeit des Ereignisses, dass Bernd und Lasse gezogen werden, kannst du mit der zweiten Pfadregel bestimmen. Diese besagt, dass du die Wahrscheinlichkeiten aller Pfade, die zu einem Ereignis gehören, addieren musst, um die Gesamtwahrscheinlichkeit zu bestimmen.
$P(\text{B und L})=P(\text{B},\text{L})+P(\text{L},\text{B})= \frac{1}{6} + \frac{1}{6} =\frac{1}{3}$.“
-
Ermittle die Wahrscheinlichkeit des Ereignisses.
TippsHier abgebildet ist das Baumdiagramm dieses Zufallsexperiments. Alle Ereignisse, die nicht Laura oder Walter betreffen, wurden weggelassen.
Mit der ersten Pfadregel bestimmst du die Wahrscheinlichkeit entlang eines Pfades. Dazu multiplizierst du die Wahrscheinlichkeiten.
Mit der zweiten Pfadregel kannst du die Wahrscheinlichkeit von Ereignissen, die aus mehreren Pfaden bestehen, bestimmen. Dazu addierst du die Wahrscheinlichkeiten aller zutreffenden Pfade.
LösungDie Wahrscheinlichkeit des Ereignisses kannst du so berechnen:
„Es gibt zwei mögliche Pfade für dieses Ereignis. Es könnte zuerst Walter und anschließend Luisa gezogen werden. Die Wahrscheinlichkeit dafür beträgt:
$P(\text{W},\text{L})=\frac{2}{5}\cdot \frac{1}{4}=\frac{1}{10}$“
- Die Wahrscheinlichkeit, dass Walter im ersten Zug gezogen wird, beträgt $\frac{2}{5}$, da er zwei Lose besitzt und insgesamt $5$ Lose existieren. Im zweiten Zug sind nur noch $4$ Lose vorhanden, deshalb ist die Wahrscheinlichkeit, dass Luisa jetzt gezogen wird, $\frac{1}{4}$.
$P(\text{L},\text{W})=\frac{1}{5} \cdot$ $\frac{2}{4}=\frac{1}{10}$.“
- Die Wahrscheinlichkeit, dass Luisa im ersten Zug gezogen wird, beträgt $\frac{1}{5}$, da sie ein Los besitzt und insgesamt $5$ Lose existieren. Im zweiten Zug sind nur noch $4$ Lose vorhanden, deshalb ist die Wahrscheinlichkeit, dass Walter gezogen wird, $\frac{2}{4}$.
$P(\text{Luisa und Walter})=P(\text{L},\text{W})+P(\text{W},\text{L})=\frac{1}{5}$“
- Mit der zweiten Pfadregel kannst du die Wahrscheinlichkeit von Ereignissen, die aus mehreren Pfaden bestehen, bestimmen. Dazu addierst du die Wahrscheinlichkeiten aller zutreffenden Pfade.
-
Bestimme die Wahrscheinlichkeiten der Ereignisse.
TippsDie erste Pfadregel besagt, dass man die Wahrscheinlichkeit eines Pfades durch Multiplikation der Wahrscheinlichkeiten entlang des Pfades bestimmt.
Dies ist ein Teil des dazugehörigen Baumdiagramms.
LösungDie Wahrscheinlichkeiten kannst du mit den beiden Pfadregeln bestimmen. Die erste Pfadregel besagt, dass man die Wahrscheinlichkeit eines Pfades durch Multiplikation der Wahrscheinlichkeiten entlang des Pfades bestimmt. Mit der zweiten Pfadregel kannst du die Wahrscheinlichkeiten von Ereignissen, die aus mehreren Pfaden bestehen, bestimmen. Dazu addierst du die Wahrscheinlichkeiten der einzelnen Pfade. Zum Beispiel ergibt sich für:
- $P(\text{G und B}) = P(\text{G},\text{B})+ P(\text{B},\text{G})= \frac{3}{8} \cdot \frac{1}{7} + \frac{1}{8} \cdot \frac{3}{7}=\frac{6}{56}=\frac{3}{28}.$
- $P(\text{G und R})=\frac{3}{7}$,
- $P(\text{R und B})=\frac{1}{7}$,
- $P(\text{2 R})=\frac{3}{14}$.
-
Bestimme die korrekten Aussagen zu Baumdiagrammen.
TippsBetrachtet man die Anzahl der Kugeln in einem Urnenmodell, so gilt:
Ist die Anzahl der Kugeln in der Urne in jeder Stufe gleich, verändern sich die Wahrscheinlichkeiten der möglichen Ergebnisse zwischen den Stufen nicht.
Hier abgebildet ist ein Baumdiagramm für ein zweistufiges Zufallsexperiment ohne Zurücklegen.
LösungDiese Aussagen sind falsch:
„Die erste Pfadregel besagt, dass man die Wahrscheinlichkeit eines Pfades durch Addition der Wahrscheinlichkeiten entlang des Pfades bestimmt.“
- Gemäß der ersten Pfadregel musst du die Wahrscheinlichkeiten entlang des Pfades multiplizieren, um die Wahrscheinlichkeit des Pfades zu bestimmen.
- In Baumdiagrammen werden die Wahrscheinlichkeiten an den Ästen des Diagramms notiert. Dies dient der Übersichtlichkeit.
„In einem Zufallsexperiment ohne Zurücklegen verändert sich die Wahrscheinlichkeit der möglichen Ergebnisse in jeder Stufe.“
- Betrachten wir das Urnenmodell: Da die Kugeln nicht wieder zurückgelegt werden, sind bei jeder Ziehung eine unterschiedliche Anzahl Kugeln in der Urne. Die Wahrscheinlichkeiten der Möglichkeiten sind also in jeder Stufe ebenfalls unterschiedlich.
- Jeder mögliche Ausgang des Zufallsversuchs wird Ergebnis genannt und zu jedem Ergebnis wird ein eigener Ast im Baumdiagramm gezeichnet.
- Wenn ein Ereignis aus mehreren Ergebnissen besteht, tragen mehrere Pfade zur Wahrscheinlichkeit des Ereignisses bei. Die zweite Pfadregel besagt, dass die Wahrscheinlichkeiten der einzelnen Pfade addiert werden.
-
Wende dein Wissen zu Zufallsexperimenten an.
TippsDas Gegenereignis $\bar{A}$ enthält alle Pfade, die nicht in $A$ enthalten sind.
LösungDiese Aussage ist falsch:
„Die Wahrscheinlichkeit beim viermaligen Werfen einer Münze vier Mal "Kopf" zu erhalten beträgt: $P(\text{4 mal Kopf})=\frac{1}{8}$.“
- Die Wahrscheinlichkeit beträgt: $P(\text{4 mal Kopf})=\left(\frac{1}{2}\right)^4=\frac{1}{16}.$
„Da sich die Wahrscheinlichkeiten aller Ereignisse eines Zufallsexperiments zu $1$ addieren, kann man auch die Wahrscheinlichkeit eines Ereignisses $A$ bestimmen, indem man die Wahrscheinlichkeit des Gegenereignisses $\bar{A}$ von $1$ abzieht.“
- Das Gegenereignis $\bar{A}$ enthält alle Pfade, die nicht in $A$ enthalten sind. Diese Rechenweise erspart Rechenarbeit, wenn die Mehrzahl der Pfade zum Ereignis $A$ gehören.
- Die Wahrscheinlichkeit für jedes Elektron ist immer $\frac{1}{2}$. Deshalb ist es ein Experiment mit Zurücklegen. Da nur die Anzahl der Elektronen gezählt wird, ist die Reihenfolge nicht von Bedeutung.
- Bei der zweiten Stufe des Zufallsexperiments sind nur noch zwei Optionen übrig. Die Wahrscheinlichkeiten dieser Optionen sind gleich. Ist der Schütze sich bewusst, in welche Ecke Waldemar vorher gesprungen ist, kann er mit einer Wahrscheinlichkeit von $50~\%$ treffen.
- Betrachten wir dafür ein Urnenmodell: Da die Kugeln nicht wieder zurückgelegt werden, sind bei jeder Ziehung eine unterschiedliche Anzahl Kugeln in der Urne. Die Wahrscheinlichkeiten der möglichen Ergebnisse sind also in jeder Stufe ebenfalls unterschiedlich.
9.360
sofaheld-Level
6.600
vorgefertigte
Vokabeln
8.211
Lernvideos
38.688
Übungen
33.496
Arbeitsblätter
24h
Hilfe von Lehrkräften

Inhalte für alle Fächer und Klassenstufen.
Von Expert*innen erstellt und angepasst an die Lehrpläne der Bundesländer.
Testphase jederzeit online beenden
Beliebteste Themen in Mathematik
- Römische Zahlen
- Prozentrechnung
- Prozentrechnung - Übungen
- Primzahlen
- Geometrische Lagebezeichnungen
- Was ist eine Ecke?
- Rechteck
- Was ist eine Gleichung?
- Pq-Formel
- Binomische Formeln
- Trapez
- Flächeninhalt – Übungen
- Volumen Zylinder
- Potenzgesetze – Übungen
- Umfang Kreis
- Zehnerzahlen vergleichen und ordnen – Übungen
- Quadrat
- Zahlen sortieren – Übungen
- Division
- Binomische Formeln – Übungen
- Raute
- Brüche umwandeln Übungen
- Parallelogramm
- Ungleichungen – Übungen
- Polynomdivision
- Zahlen bis 1000 ordnen – Übungen
- Was Ist Eine Viertelstunde
- Terme mit Variablen aufstellen – Übungen
- Prisma
- Die Grundrechenarten – Übungen
- Mitternachtsformel
- Äquivalenzumformung
- Grundrechenarten Begriffe
- Größer Kleiner Zeichen
- Dreiecksarten
- Punkt-vor-Strich und Klammern-zuerst-Regel
- Aufbau von Dreiecken
- Quader
- Zahlen runden – Übungen
- Satz Des Pythagoras
- Ziffern und Stellenwerte – Übungen
- Dreieck Grundschule
- Koordinatensystem – Übungen
- Erste Binomische Formel
- Kreis
- Trigonometrie
- Trigonometrische Funktionen
- Standardabweichung
- Quadratische Gleichungen – Übungen
- Flächeninhalt