Über 1,6 Millionen Schüler*innen nutzen sofatutor!
  • 93%

    haben mit sofatutor ihre Noten in mindestens einem Fach verbessert

  • 94%

    verstehen den Schulstoff mit sofatutor besser

  • 92%

    können sich mit sofatutor besser auf Schularbeiten vorbereiten

Was sind periodische Vorgänge?

Du willst ganz einfach ein neues Thema lernen
in nur 12 Minuten?
Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
  • Das Mädchen lernt 5 Minuten mit dem Computer 5 Minuten verstehen

    Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.

    92%
    der Schüler*innen hilft sofatutor beim selbstständigen Lernen.
  • Das Mädchen übt 5 Minuten auf dem Tablet 5 Minuten üben

    Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.

    93%
    der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert.
  • Das Mädchen stellt fragen und nutzt dafür ein Tablet 2 Minuten Fragen stellen

    Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.

    94%
    der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.
Bereit für eine echte Prüfung?

Das Periodische Vorgänge Quiz besiegt 60% der Teilnehmer! Kannst du es schaffen?

Quiz starten
Bewertung

Ø 3.6 / 19 Bewertungen
Die Autor*innen
Avatar
Mathe-Team
Was sind periodische Vorgänge?
lernst du in der 9. Klasse - 10. Klasse

Grundlagen zum Thema Was sind periodische Vorgänge?

Mit Hilfe der Bewegung des Ventils von Karstens Hinterrad am Fahrrad erfährst du: Periodische Vorgänge wiederholen sich immer gleich und in gleichen zeitlichen oder räumlichen Abständen. Periodische Vorgänge können graphisch dargestellt werden. Der zu einem x-Wert gehörende y-Wert heißt Ausschlag. Der Kehrwert der Periodenlänge heißt Frequenz.

Transkript Was sind periodische Vorgänge?

Hallo und herzlich willkommen zum Thema: Was sind periodische Vorgänge? Wir wollen dir heute anhand eines Beispiels zeigen, was periodische Vorgänge sind. Im Alltag, in Natur und Technik gibt es Vorgänge, die sich regelmäßig und immer genau gleich wiederholen. Solche Vorgänge nennen wir periodisch. Karsten ist ein begeisterter Radfahrer. Sein Lehrer hat ihm folgende Aufgabe gestellt: Zeichne auf, wie sich die Höhe des Ventils über der Straße am Hinterrad deines Fahrrades verändert. Und zwar in Abhängigkeit von dem zurückgelegten Weg. Du wirst sehen, das ist ein periodischer Vorgang. Wie hat Karsten nun die Aufgabe gelöst? Karsten spielt die Bewegung des Rades durch das Abrollen einer CD auf einem Lineal nach. Er hat auf eine CD zwei Kreise aus Pappe geklebt. Der Punkt A ist die Radnabe. Der Punkt B stellt das Ventil dar. Beide sind durchstochen, damit er die Spitze eines Stifts hindurch bekommt. Damit lassen sich Punkte beim Abrollen der CD markieren. Karsten rollt das Radmodell langsam am Lineal entlang. Er stoppt und markiert das Ventil und die Radnabe. Karstens Bild sieht so aus. Die farbigen Punkte beschreiben die Bewegung des Ventils, die Schwarzen die der Nabe. Er verbindet die Punkte miteinander. Das Ventil beschreibt einen periodischen Vorgang. Die Nabe läuft geradeaus. Das ist sein Ergebnis. Am Diagramm sehen wir, dass die Bewegung sich wiederholt. Die Periodenlänge T gibt die kleinste Länge an, nach der sich der Vorgang wiederholt. Bei zeitlichen Vorgängen wird die Periodenlänge auch Periodendauer genannt. Ihr Wert ist immer größer null. Alle y-Werte wiederholen sich innerhalb einer Periode. Am Graphen kann man dies beispielhaft zeigen. Die beiden pinken Punkte begrenzen die Periode. In diesem Bereich vollzieht das Rad eine komplette Umdrehung. Die Frequenz f gibt an, wie viele Umläufe das Objekt pro Messeinheit x macht. Bei unserem Beispiel wäre die Messeinheit nun Meter. Die Messeinheit könnte bei anderen Aufgaben beispielsweise auch Sekunden sein. Die Frequenz ist damit immer der Kehrwert der Periodenlänge. Du hast heute an Karstens Experiment gelernt, was ein periodischer Vorgang ist. Viel Spaß auf der Suche nach weiteren periodischen Vorgängen im Alltag. Auf Wiedersehen.

Was sind periodische Vorgänge? Übung

Du möchtest dein gelerntes Wissen anwenden? Mit den Aufgaben zum Video Was sind periodische Vorgänge? kannst du es wiederholen und üben.
  • Beschreibe periodische Vorgänge.

    Tipps

    Ein nichtperiodischer Vorgang enthält kein erkennbares sich wiederholendes Muster oder wiederholt sich auf eine unregelmäßige Art und Weise.

    Die Bewegung eines Flummis ist kein periodischer Vorgang, da die Sprunghöhe immer kleiner wird.

    Lösung

    Im Alltag, in Natur und Technik gibt es Vorgänge, die sich regelmäßig und immer genau gleich wiederholen. Diese nennen wir periodische Vorgänge.

    Bei einem periodischen Vorgang kannst Du einen Teil des Vorgangs ausfindig machen, der sich genauso wiederholt. Zum Beispiel wiederholt das Ventil am Hinterrad eines Fahrrads immer wieder den Aufstieg und Abstieg von der tiefsten Position zur höchsten und wieder zurück auf die immer gleiche Weise.

    Ein Gegenbeispiel: Die Bewegung eines Flummis ist kein periodischer Vorgang, denn die Sprunghöhe wird immer kleiner.

  • Bestimme die richtige Gleichung für die Frequenz $f$ in Abhängigkeit von der Periodenlänge $T$.

    Tipps

    Die Frequenz ist die Anzahl der Umläufe pro Messeinheit.

    Das Produkt von Periodenlänge und Frequenz ist immer $1$.

    Lösung

    Die Frequenz eines periodischen Vorganges ist die Anzahl der Umläufe pro Messeinheit. Du kannst sie als Kehrwert der Periodenlänge berechnen: $f=\frac{1}{T}$.

    Diese Gleichung lässt sich noch in eine weitere Gleichung umwandeln. Wenn ich den Kehrwert auf beiden Seiten bilde, bleibt die Gleichung korrekt und ich erhalte $\frac{1}{f}=T$ bzw. $T=\frac{1}{f}$. Diese Gleichung ist also ebenfalls korrekt.

    Eine gute Merkregel ist die folgende: Das Produkt von Periodenlänge und Frequenz ist immer $1$, d.h. es gilt $f\cdot T=1$. Diese Gleichung erhältst du, wenn du in der Ausgangsgleichung $f=\frac{1}{T}$ auf beiden Seiten mit $T$ multiplizierst.

  • Berechne die gesuchten Frequenzen.

    Tipps

    Bei Frequenzen steht die Enheit unter dem Bruchstrich.

    Du musst die Einheiten in Minuten bzw. Dezimeter umrechnen.

    Die Frequenz ist der Kehrwert der Periodendauer bzw. der Periodenlänge.

    Lösung

    Wenn der Minutenzeiger wieder an der gleichen Stelle ist, ist genau eine Periode vorüber. Dafür benötigt er $1$ Stunde oder $60$ Minuten, also ist dies auch seine Periodendauer. Seine Frequenz ist der Kehrwert der Periodendauer, also $\frac{1}{60~min}$.

    Wenn die Propellerspitze wieder an ihrer Ausgangsposition ist, hat sie eine Periode zurückgelegt und $6~m=60~dm$ hinter sich gebracht. Die Periodenlänge ist dann $60~dm$. Die Frequenz der Kehrwert der Periodenlänge, hier $\frac{1}{60~dm}$.

  • Entscheide, welche Gleichungen korrekt sind.

    Tipps

    Die Frequenz ist die Anzahl der Umläufe pro Messeinheit.

    Die Frequenz ist der Kehrwert der Periodenlänge; d.h. es gilt: $f=\frac{1}{T}$.

    Lösung

    Die Frequenz ist per Definition immer der Kehrwert der Periodenlänge: $f=\frac{1}{T}$.

    • Wenn du nun auf beiden Seiten den Kehrwert bildest, erhältst du $T=\frac{1}{f}$.
    • $f\cdot T$ lässt sich dann auch schreiben als $\frac{f}{f}$, da $T=\frac{1}{f}$ ist und es ergibt sich $f\cdot T=\frac{f}{f}=1$.
    • Ebenso lässt sich $\frac{f}{T}$ umschreiben, z. B. als $\frac{f}{\frac{1}{f}}$. Dies lässt sich als Multiplikation mit dem Kehrwert des Nenners schreiben: $f\cdot f=f^2$. Daher gilt, dass $\frac{f}{T}=f^2$ ist.
    • $2\cdot T$ ist wegen der Beziehung der Periodendauer und der Frequenz zueinander nichts anderes als $2\cdot\frac{1}{f}=\frac{2}{f}$.
  • Definiere die Begriffe Periodenlänge und Frequenz.

    Tipps

    Die Frequenz ist der Kehrwert der Periodenlänge.

    Lösung

    Die Periodenlänge ist die kleinste Länge nach der sich ein Vorgang wiederholt. Die Periode geht also vom Start des Vorgangs bis zum ersten Punkt, bei dem sich der Vorgang wiederholt.

    Die Frequenz ist definiert als die Anzahl der Umläufe für eine bestimmte Messeinheit x. Sie gibt also an, wie oft sich der Vorgang innerhalb der Messeinheit x wiederholt. Die Messeinheit kann dabei unterschiedlich ausfallen. Die Frequenz ist der Kehrwert der Periodenlänge. Ist also die Periodenlänge $1~m$, so ergibt die Frequenz $\frac{1}{m}$.

  • Ordne den Größen die korrekten Werte mit ihren Einheiten zu.

    Tipps

    $1~Hz$ entspricht gerade $1\cdot s^{-1}$.

    Beachte: Bei Frequenzen stehen die Zeit- und Längeneinheiten jeweils im Nenner.

    Lösung

    Wir ordnen die Werte zu:

    • $11~\frac{1}{min}$, $\frac{1}{km}$, $\frac{7}{cm}$ und $\frac{8}{10m}$ sind der Frequenz $f$ zuzuordnen, da die Messeinheit in jedem Fall im Nenner auftaucht und die Frequenz definiert ist als „Anzahl der Umläufe pro Messeinheit $x$“.
    • $20~Hz$ ist ebenfalls der Frequenz zuzuordnen, da es sich bei $Hz$ um eine zusammengesetzte Einheit handelt und $1~Hz=1~\frac{1}{s}$ entspricht.
    • Entsprechend sind $5~s$ und $78~m$ der Periodenlänge $T$ zuzuordnen. $69~\frac{1}{kHz}$ wiederum gehört auch zur Periodenlänge $T$, denn $\frac{1}{kHz}=\frac{1}{\frac{1000}{s}}=\frac{1}{1000} s$, weil $Hz$ eine zusammengesetzte Einheit darstellt.
30 Tage kostenlos testen
Mit Spaß Noten verbessern
und vollen Zugriff erhalten auf

8.807

sofaheld-Level

6.601

vorgefertigte
Vokabeln

7.860

Lernvideos

37.803

Übungen

33.942

Arbeitsblätter

24h

Hilfe von Lehrkräften

laufender Yeti

Inhalte für alle Fächer und Klassenstufen.
Von Expert*innen erstellt und angepasst an die Lehrpläne der Bundesländer.

30 Tage kostenlos testen

Testphase jederzeit online beenden