sofatutor 30 Tage kostenlos ausprobieren

Videos & Übungen für alle Fächer & Klassenstufen

Rationale Zahlen – Klammerregeln 05:58 min

Textversion des Videos

Transkript Rationale Zahlen – Klammerregeln

Das ist Peter Paket. Er ist Paketbote und wird jeden Tag vor eine neue Herausforderung gestellt. Wie das eine Mal als er sich auf das Dach verlaufen hat. Doch als er das Paket noch einmal näher betrachtete, ist ihm etwas wichtiges in Klammern aufgefallen. Und auch beim Rechnen mit rationalen Zahlen spielen Klammern eine große Rolle. Wiederholen wir dazu zunächst einmal, was rationale Zahlen überhaupt sind. Rationale Zahlen sind positive und negative Zahlen, die sich als Bruch darstellen lassen. Auch die ganzen Zahlen sind in der Menge der rationalen Zahlen enthalten. An der Zahlengeraden haben wir also den negativen Bereich, die Null und den positiven Bereich. Wir können Brüche zwischen den ganzen Zahlen eintragen. Der Betrag einer Zahl ist der Abstand dieser Zahl zur 0. So ist der Betrag von -3,5 gleich dem Betrag von 3,5 und das ist gleich 3,5. Schauen wir uns zunächst das Assoziativgesetz an. Für die Addition besagt es, dass man beim mehrfachen Addieren Klammern beliebig setzen, umsetzen oder auch weglassen kann. So ist in Klammern (6,5 + 3,3) + 2,4 dasselbe wie 6,5 + in Klammern (3,3+ 2,4) oder auch 6,5+3,3+2,4. Berechnen wir die erste Summe und rechnen zuerst die Klammern und addieren dann 2,4, so erhalten wir 12,2. Dasselbe Ergebnis erhalten wir , wenn wir zunächst 3,3+2,4 rechnen und dann 6,5 addieren und ebenso wenn wir von links nach rechts rechnen. Da man jede Subtraktion auch als Addition schreiben kann, können wir das Assoziativgesetz nun auf die Subtraktion anwenden. 6,5 minus in Klammern 3,3+2,4 ist also das gleiche wie 6,5 plus minus 3,3 plus minus 2,4. Allgemein gelten bei der Addition und Subtraktion folgende Klammergesetze: a + in Klammern b + c ist gleich a + b +c. Haben wir innerhalb der Klammer ein Minus, aber vor der Klammer ein +, so können wir die Klammern auch einfach so auflösen. a - in Klammern b + c ist gleich a - b - c. Ist innerhalb der Klammer ein Minus, so wird dies beim Auflösen der Klammern zu einem plus. Wenn sich ein Minus vor der Klammer befindet, müssen wir alle Plus-Zeichen in der Klammer zu einem Minus Zeichen umwandeln und umgekehrt, wenn wir die Klammer auflösen wollen. Das Assoziativgesetz gilt ebenso für die Multiplikation. Auch bei der Multiplikation können wir Klammern beliebig setzen oder weglassen. Rechnen wir alle drei Terme aus so sehen wir, dass sich bei jedem Term am Ende das Ergebnis 2,7 ergibt. Wenn wir eine Division in eine Multiplikation umwandeln, können wir das Assoziativgesetz ebenso für die Division anwenden. Machen wir weiter mit dem Distributivgesetz und schauen uns dazu dieses Beispiel an: Minus 2 mal in Klammern 3,5 + 5,2. Hier hast du also innerhalb der Klammer eine Addition und außerhalb der Klammer eine Multiplikation. Berechnen wir die Klammern zuerst, so erhalten wir Minus 2 mal 8,7 und das sind Minus 17,4. Das Distributivgesetz besagt nun, dass wir zunächst die Zahlen in der Klammer mit dem Faktor Minus 2 multiplizieren können. Wichtig ist, dass wir die Vorzeichen nicht vergessen! Nachdem wir dann die Produkte ausgerechnet haben, addieren wir und erhalten als Endergebnis also ebenfalls Minus 17,4. Andersherum kann man die Rechnung mithilfe des Distributivgesetzes vereinfachen und dann leichter im Kopf lösen. So können wir 5,4 mal 7 umschreiben zu in Klammern (5 +0,4) mal 7. Wir rechnen dann 5 mal 7 und 0,4 mal 7 und erhalten so das Endergebnis 37,8. Fassen wir zusammen. a + in Klammern b + c ist gleich a + b +c und a plus in Klammern b - c ist gleich a + b - c. a - in Klammern b + c ist gleich a minus b minus c und a - in Klammern b - c ist gleich a - b + c. Das Distributivgesetz besagt folgendes: r. Eine Summe bzw. Differenz wird mit einem Faktor multipliziert, indem man jeden Summanden bzw. Minuenden und Subtrahend einzeln mit diesem Faktor multipliziert... und die Produkte dann addiert bzw. subtrahiert. Andersherum kann man das Rechnen mithilfe des Distributivgesetzes wie im Beispiel vereinfachen und dann leichter im Kopf rechnen. Und Peter hat es mal wieder geschafft sein Paket zuzustellen.

3 Kommentare
  1. *komazahlen

    Von Jensk1307, vor 4 Monaten
  2. Ich verstehe noch nicht wie man Komma zalando mit Brüchen berechnet .Ansonsten gutes Video.

    Von Jensk1307, vor 4 Monaten
  3. Das Video ist wunderbar, nur hätte ich gern, dass es zu jeder Rechenart eine Übung gibt. Also noch für die Subtraktion und für die Multiplikation.

    Von Tobias K., vor 6 Monaten

Rationale Zahlen – Klammerregeln Übung

Du möchtest dein gelerntes Wissen anwenden? Mit den Aufgaben zum Video Rationale Zahlen – Klammerregeln kannst du es wiederholen und üben.

  • Gib das Assoziativ- und Distributivgesetz an.

    Tipps

    Das Assoziativgesetz der Addition und Multiplikation besagt, dass sich das Ergebnis einer reinen Addition bzw. reinen Multiplikation nicht ändert, wenn man Klammern umsetzt oder weglässt.

    Sieh dir folgendes Beispiel an: $~ 2\cdot (3+5)$

    Du kannst diese Aufgabe lösen, indem du entweder zuerst den Ausdruck in der Klammer berechnest und dann von links nach rechts weiter rechnest oder das Distributivgesetz anwendest:

    • $2\cdot 8=16$
    • $2\cdot 3+2\cdot 5=6+10=16$
    Lösung

    Assoziativgesetz der Addition

    Das Assoziativgesetz der Addition besagt, dass sich das Ergebnis einer reinen Addition nicht ändert, wenn man Klammern umsetzt oder weglässt. Es gilt demnach:

    • $a+(b+c)=(a+b)+c=a+b+c$
    Minusklammer

    Betrachtest du eine Additions- bzw. Subtraktionsaufgabe, die eine Minusklammer enthält, so gehst du wie folgt vor: Alle Zeichen in der Klammer drehen sich um, die Klammer und das Minuszeichen davor fallen weg. Beachte hierbei, dass vor dem $b$ am Anfang der Klammer eigentlich ein Pluszeichen steht, das wir in der Regel nur aus „Faulheit“ nicht aufschreiben! Es gilt also:

    • $a-(b+c)=a+(-b)+(-c)=a-b-c$
    Assoziativgesetz der Multiplikation

    Das Assoziativgesetz der Multiplikation besagt, dass sich das Ergebnis einer reinen Multiplikation nicht ändert, wenn man Klammern umsetzt oder weglässt $-$ also genauso wie für die Addition, nur mit Malpunkten statt Pluszeichen. Es gilt demnach:

    • $a\cdot (b\cdot c)=(a\cdot b)\cdot c=a\cdot b\cdot c$
    Distributivgesetz

    Das Distributivgesetz besagt, dass man statt eine Summe mit einer Zahl zu multiplizieren, auch jeden Summanden mit dieser Zahl multiplizieren und dann die Produkte addieren kann.

    • $a\cdot (b+c)=ab+ac$
  • Vervollständige die Gleichungen mit Hilfe des Assoziativ- und Distributivgesetzes.

    Tipps

    Hast du in deinem Term eine Minusklammer, so kannst du die Klammer weglassen, indem du alle Pluszeichen innerhalb der Klammer in Minuszeichen und alle Minuszeichen in Pluszeichen umwandelst.

    Das Distributivgesetz lautet:

    $a\cdot (b+c)=ab+ac$

    Lösung

    Das Assoziativ- und Distributivgesetz können manchmal das Rechnen deutlich vereinfachen. Sie lauten wie folgt:

    Assoziativgesetz der Addition

    • $a+(b+c)=(a+b)+c=a+b+c$
    Minusklammer

    • $a-(b+c)=a+(-b)+(-c)=a-b-c$
    Assoziativgesetz der Multiplikation

    • $a\cdot (b\cdot c)=(a\cdot b)\cdot c=a\cdot b\cdot c$
    Distributivgesetz

    • $a\cdot (b+c)=ab+ac$
    Nun wenden wir diese Gesetze auf die hier betrachteten Terme an und erhalten:

    • $(6,5+3,3)+2,4=6,5+(3,3+2,4)$
    • $6,5-(3,3+2,4)=6,5+(-3,3)+(-2,4)$
    • $(1,5\cdot 1,5)\cdot 1,2=1,5\cdot (1,5\cdot 1,2)$
    • $-2\cdot (3,5+5,2)=-2\cdot 3,5+(-2)\cdot 5,2$
  • Ordne den Aufgaben das jeweils angewandte Rechengesetz zu.

    Tipps

    Das Assoziativgesetz der Addition besagt, dass sich das Ergebnis einer reinen Addition nicht ändert, wenn man Klammern umsetzt oder weglässt. Es gilt demnach:

    • $a+(b+c)=(a+b)+c=a+b+c$
    Dieses Gesetz gilt auch für die reine Multiplikation:

    • $a\cdot (b\cdot c)=(a\cdot b)\cdot c=a\cdot b\cdot c$

    Das Distributivgesetz besagt, dass wir, anstatt eine Summe mit einer Zahl zu multiplizieren, auch jeden Summanden mit dieser Zahl multiplizieren und dann die Produkte addieren können.

    Lösung

    Lass uns gemeinsam untersuchen, welche Gesetze in welchen Beispielen angewandt wurden.

    Beispiel 1: $\quad 2\cdot (5\cdot 3)=(2\cdot 5)\cdot 3=10\cdot 3=30$

    Nach dem ersten Gleichheitszeichen wird hier das Assoziativgesetz der Multiplikation genutzt. Anstatt zuerst das Produkt $5\cdot 3$ zu bestimmen, wird die Klammer so gesetzt, dass zuerst das Produkt $2\cdot 5$ berechnet wird, welches im nächsten Schritt dann mit dem Faktor $3$ multipliziert wird.

    Beispiel 2: $\quad 2\cdot (5+3)=2\cdot 5+2\cdot 3=10+6=16$

    Hier wird im ersten Schritt das Distributivgesetz angewandt. Dieses besagt, dass wir, anstatt eine Summe mit einer Zahl zu multiplizieren, auch jeden Summanden mit dieser Zahl multiplizieren und dann die Produkte addieren können. Genauso wird hier vorgegangen.

    Beispiel 3: $\quad (5-3)\cdot 2=5\cdot 2-3\cdot 2=10-6=4$

    Auch hier wird im ersten Schritt das Distributivgesetz angewandt, auch wenn in der Klammer eine Differenz steht. Diese kannst du nämlich auch als Summe $2+(-3)$ schreiben.

    Beispiel 4: $\quad 2+(5+3)=(2+5)+3=7+3=10$

    Nach dem ersten Gleichheitszeichen wird hier das Assoziativgesetz der Addition genutzt. Anstatt zuerst die Summe $5+3$ zu bestimmen, wird die Klammer so gesetzt, dass zuerst die Summe $2+5$ berechnet wird, welche im nächsten Schritt dann zum Summanden $3$ addiert wird.

    Beispiel 5: $\quad 5\cdot (2+3)=5\cdot 2+5\cdot 3=10 + 15=25$

    Auch hier wird das Distributivgesetz genutzt.

    Beispiel 6: $\quad (3\cdot 5)\cdot 5=3\cdot (5\cdot 5)=3\cdot 25=75$

    Mit dem Assoziativgesetz der Multiplikation wird hier zuerst $5\cdot 5$ statt $3\cdot 5$ gerechnet.

  • Wende das Distributivgesetz an, um einfacher zu rechnen.

    Tipps

    Zerlege den Faktor, der ein Dezimalbruch ist, in zwei Summanden (oder Minuenden und Subtrahenden), sodass die Multiplikation einfacher wird.

    Sieh dir folgendes Beispiel an:

    $6\cdot 7,6=6\cdot (7+0,6)=42+3,6=45,6$

    Lösung

    Wir können das Distributivgesetz auch umgekehrt nutzen, um uns das Lösen einer Multiplikationsaufgabe zu erleichtern. Dazu zerlegen wir einen der Faktoren so, dass wir die Aufgabe mit geringerem Rechenaufwand lösen können. Wir erhalten dann folgende Rechnungen:

    Beispiel 1

    • $5,7\cdot 4=(5+0,7)\cdot 4=20+2,8=22,8$
    Hier zerlegen wir den Faktor $5,7$ in die Summanden $5$ und $0,7$.

    Beispiel 2

    • $6,9\cdot 5=(7-0,1)\cdot 5=35-0,5=34,5$
    Diesmal wird der Faktor $6,9$ in den Minuenden $7$ und Subtrahenden $0,1$ zerlegt.

    Beispiel 3

    • $9\cdot 4,3=9\cdot (4+0,3)=36+2,7=38,7$
    Den Faktor $4,3$ zerlegen wir in die Summanden $4$ und $0,3$.

  • Gib die rationalen Zahlen der markierten Punkte auf der Zahlengeraden an.

    Tipps

    $\frac 12$ liegt genau in der Mitte von $0$ und $1$. Ist diese Mitte markiert?

    Alle Zahlen auf der Zahlengeraden, die links von der Null liegen, sind negativ.

    Lösung

    Eine Zahlengerade dient zur Veranschaulichung von Zahlen als Punkte auf einer Geraden. Die Zahl $0$ teilt die Zahlengerade in zwei Teile. Auf der rechten Seite der $0$ befinden sich die positiven Zahlen, auf der linken Seite die negativen. Der Bereich zwischen zwei aufeinanderfolgenden ganzen Zahlen kann unterschiedlich in gleich große Teile unterteilt werden. Teilen wir diesen Abstand zum Beispiel in drei gleich große Teile, entspricht jedes Teil einem Drittel. Genauso können wir ein Ganzes auch halbieren, sodass jedes Teil genau $\frac 12$ groß ist. Teilen wir das Ganze in $10$ gleich große Teile, zählt jedes Teil $\frac 1{10}=0,1$. Damit erhalten wir die hier abgebildeten Zahlen für die Zahlengerade.

  • Ermittle die Lösungen der jeweiligen Aufgaben.

    Tipps

    Du kannst hier entweder die Rechengesetze Assoziativ- und Distributivgesetz anwenden oder in folgender Reihenfolge vorgehen:

    1. Zuerst die Klammern berechnen, dabei beginnst du bei den inneren Klammern.
    2. Dann die Punktrechnungen vor den Strichrechnungen durchführen.

    Sieh dir folgendes Beispiel an:

    $\begin{array}{lll} 20-32-(1,8+3\cdot(1,3+3,7))\cdot 1,9 &=& 20-32-(1,8+3\cdot 5)\cdot 1,9 \\ &=& 20-32-(1,8+15)\cdot 1,9 \\ &=& 20-32-16,8\cdot 1,9 \\ &=& 20-32-31,92 \\ &=& -12-31,92 \\ &=& -43,92 \end{array}$

    Lösung

    Wir können hier entweder die Rechengesetze Assoziativ- und Distributivgesetz anwenden oder in folgender Reihenfolge vorgehen:

    1. Zuerst die Klammern berechnen, dabei beginnen wir bei den inneren Klammern.
    2. Dann die Punktrechnungen vor den Strichrechnungen durchführen.
    Wir werden hier nun beide Varianten mal anwenden:

    Beispiel 1

    Hier wenden wir zuerst die Regel für Minusklammern an. Dann nutzen wir das Distributivgesetz, um uns die Multiplikation $5,4\cdot 9$ zu erleichtern. Wir zerlegen hierzu den Faktor $5,4$ in die Summanden $5$ und $0,4$.

    $\begin{array}{lll} 5,4\cdot 9+22,4-(4,5-2,5) &=& 5,4\cdot 9+22,4-4,5+2,5 \\ &=& (5+0,4)\cdot 9+22,4-4,5+2,5 \\ &=& 45+3,6+22,4-4,5+2,5 \\ &=& 69 \end{array}$

    Beispiel 2

    Hier nutzen wir im ersten Schritt das Distributivgesetz. Danach berechnen wir den Klammerausdruck und rechnen anschließend von links nach rechts:

    $\begin{array}{lll} (5-2,2)\cdot 5+(6+33,8) &=& 25-11+(6+33,8) \\ &=& 25-11+39,8 \\ &=& 53,8 \end{array}$

    Beispiel 3

    Im ersten Schritt formulieren wir das Distributivgesetz so um, dass wir in der Klammer Summanden haben, mit denen wir einfacher rechnen können. Bei dem zweiten Distributivgesetz gehen wir genauso vor. Dann heben wir die Minusklammer aus, indem wir alle Plus- und Minuszeichen in der Klammer entsprechend umkehren:

    $\begin{array}{lll} 2\cdot (1,6+3,3)\cdot 3-(1,2-6) &=& 2\cdot (0,9+4)\cdot 3-(1,2-6) \\ &=& (1,8+8)\cdot 3-(1,2-6) \\ &=& (0,8+9)\cdot 3-(1,2-6) \\ &=& 2,4+27-(1,2-6) \\ &=& 2,4+27-1,2+6 \\ &=& 34,2 \end{array}$

    Beispiel 4

    Hier nutzen wir weder Assoziativ- noch Distributivgesetz. Wir berechnen beginnend bei der innersten Klammer zuerst die Klammerausdrücke, dabei beachten wir Punkt- vor Strichrechnung:

    $\begin{array}{lll} 54-(2+3\cdot(3,6+2,4))\cdot 1,2 &=& 54-(2+3\cdot 6)\cdot 1,2 \\ &=& 54-(2+18)\cdot 1,2 \\ &=& 54-20\cdot 1,2 \\ &=& 54-24 \\ &=& 30 \end{array}$