Über 1,6 Millionen Schüler*innen nutzen sofatutor!
  • 93%

    haben mit sofatutor ihre Noten in mindestens einem Fach verbessert

  • 94%

    verstehen den Schulstoff mit sofatutor besser

  • 92%

    können sich mit sofatutor besser auf Schularbeiten vorbereiten

Oktaeder im Raum – Oberflächeninhalt und Volumen

Video abspielen
Du willst ganz einfach ein neues Thema lernen
in nur 12 Minuten?
Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
  • Das Mädchen lernt 5 Minuten mit dem Computer 5 Minuten verstehen

    Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.

    92%
    der Schüler*innen hilft sofatutor beim selbstständigen Lernen.
  • Das Mädchen übt 5 Minuten auf dem Tablet 5 Minuten üben

    Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.

    93%
    der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert.
  • Das Mädchen stellt fragen und nutzt dafür ein Tablet 2 Minuten Fragen stellen

    Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.

    94%
    der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.
Bereit für eine echte Prüfung?

Das Oktaeder Übung Quiz besiegt 60% der Teilnehmer! Kannst du es schaffen?

Quiz starten
Bewertung

Gib eine Bewertung ab!
Die Autor*innen
Avatar
Frank Steiger
Oktaeder im Raum – Oberflächeninhalt und Volumen
lernst du in der 11. Klasse - 12. Klasse - 13. Klasse

Grundlagen zum Thema Oktaeder im Raum – Oberflächeninhalt und Volumen

Stell dir vor, du findest einen Rubin, welcher die Form eines Oktaeders hat. Das ist ja sicher schon ziemlich klasse. Nun möchtest du jedoch wissen, was dieser Rubin wert ist. Den Wert eines Edelsteines berechnet man über das Karat. In diesem Video kannst du lernen, wie du das Volumen und den Oberflächeninhalt eines Oktaeders mit Hilfe von Vektoren berechnen kannst. Mit Hilfe des Volumens und ein klein wenig Physik berechnen wir dann das Gewicht und schließlich wie viel Karat der Rubin besitzt. Ich hoffe, du kannst alles verstehen und freue mich auf Fragen von Dir. Bis dann, Frank.

Transkript Oktaeder im Raum – Oberflächeninhalt und Volumen

Hallo, mein Name ist Frank. In diesem Video zeige ich dir, wie du bei einem Oktaeder im Raum den Oberflächeninhalt und auch das Volumen berechnen kannst. Und als Beispiel für einen Oktaeder betrachte ich einen Rubin. Ein Oktaeder ist eine Doppelpyramide mit quadratischer Grundfläche. Und du kannst hier mal einen Rubin sehen. Ich habe jetzt hier als Beispiel einen Rubin mit diesen Daten der Grundfläche. Der Rubin sei 2cm hoch. Und den tu ich jetzt mal hier rüber und vergrößere den mal. Jetzt kannst du diesen Rubin hier links sehen. Diesen Rubin lege ich ins Koordinatensystem, sodass die Eckpunkte der quadratischen Grundfläche gerade so gegeben sind, also A ist der Koordinatenursprung (0/0/0), das kannst du hier auch sehen. B ist der Punkt (1/0/0), C(1/1/0), D(0/1/0) und die Spitze S ist dann 0,5; 0,5 - das schreibe ich hier nochmal an - und da der Rubin ja zwei Zentimeter hoch ist, hat jede Pyramide natürlich die Höhe eins; also wäre die Spitze S(0,5/0,5/1). Und aus Symmetriegründen wäre der entsprechend unten liegende Punkt, ich habe den hier mit S’ bezeichnet, (0,5/0,5/-1). Für die folgende Betrachtung brauche ich das nicht, weil diese ganzen Berechnungen die Symmetrie mit einbeziehen. Zuerst nehmen wir uns mal der Oberfläche dieses Oktaeders an. Und wie du hier sehen kannst, besteht die Oberfläche aus acht gleich großen Dreiecken, also wäre es achtmal der Flächeninhalt eines Dreiecks. Und diese Dreiecke, die Flächeninhalte dieser Dreiecke kann man durch den Betrag des Vektorproduktes der Vektoren u und w berechnen. u ist dabei der Verbindungsvektor von A und B das kannst du in dem Bild auch sehen, und entsprechend wäre w der Verbindungsvektor von A und S. Und wenn ich nur dieses Vektorprodukt anschaue, dann gibt die Länge dieses entstehenden Vektors den Flächeninhalt des entsprechend aufgespannten Parallelogramms an und dann ist natürlich der Flächeninhalt des entsprechenden Dreiecks gerade die Hälfte dieses Flächeninhaltes. Der Vektor AB ist gerade der Ortsvektor zu B, also (1/0/0), da A ja der Ursprung ist, und entsprechend ist der Vektor AS gerade der Ortsvektor des Punktes S, also (0,5/0,5/1). Und zuerst einmal betrachte ich das Vektorprodukt u kreuz w. Also nochmal, du kannst die beiden Vektoren hier in der Skizze auch sehen. Und das Vektorprodukt ist gerade (0/-1/0,5). Und für diese Formel brauche ich die Länge diese Vektorproduktes, also mache ich hier Betragsstriche drum. Und da kommt gerade 1,25 raus. Und wenn ich mir diese Formel anschaue, wäre die Oberfläche des Oktaeders acht mal 1/2, also vier mal 1,25 und das ist ungefähr 4,47. Die Maßeinheiten sind cm, also habe ich hier als Flächeneinheit cm2. Damit hätte ich schonmal die Oberfläche dieses Oktaeders berechnet und werde mir im Folgenden die Volumenberechnung anschauen. Gut, nachdem ich den Oberflächeninhalt berechnet habe von diesem Rubin, diesem Oktaeder, schaue ich mir im Folgendem die Volumenberechnung an. Und da werde ich dann anschließend noch die Dichte und die Karatzahl dieses Rubins berechnen. Du kannst es hier noch mal im Koordinatensystem sehen. Zum Berechnen des Volumens brauche ich das sogenannte Spatprodukt. Und das Volumen eines Spats ist dann genau durch diese Formel gegeben. Ein Spat ist ein räumliches Gebilde, welches von drei Vektoren aufgespannt wird. Also im Folgenden werde ich die Vektoren u, v und w betrachten, die du hier schon mal siehst, und im Koordinatensystem kannst du die blau markiert sehen. Und wenn wir uns ein spezielles Spat vorstellen, dann hieße das, wir hätten drei Vektoren, die immer senkrecht aufeinander stehen, also senkrecht, und das entsprechend aufgespannte Spat wäre ein Prisma. Und das Volumen einer Pyramide ist ja gerade ein Drittel des Prismas und genauso ist es auch beim Spat. Das Volumen der Pyramide ist ein Drittel des Volumens des Spates. Und da das Oktaeder eine Doppelpyramide ist, ist natürlich das Volumen des Oktaeders gerade 2/3 dieses VSpat. Das heißt, ich berechne jetzt erstmal VSpat. Und das ist ja nichts anderes als das Vektorprodukt dieser beiden Vektoren also (1/0/0), (0/1/0). Und dieser Vektor wird skalar mit dem dritten Vektor, also in diesem Fall (0,5/0,5/1), multipliziert. Das Vektorprodukt dieser beiden Vektoren ist gerade der Vektor (0/0/1) und das Skalarprodukt dieser beiden Vektoren ist dann gerade eins. Und das heißt, dass das Volumen des Oktaeders, das gesuchte Volumen, gerade 2/3 mal eins, also 2/3. Und da wir Volumen haben sind das cm3. Damit habe ich das Volumen des Oktaeders schonmal berechnet. Und werde mir folgend die Dichte und die Karatzahl des Oktaeders anschauen, also des Rubins. Ok, das Volumen habe ich ja gerade berechnet, da haben wir herausbekommen 2/3cm3. Und jetzt zeige ich dir noch, wie du mit diesem bekannten Volumen die Dichte, und schließlich und endlich auch die Karatzahl, dieses Rubins, mit dem wir angefangen haben, berechnen kannst. Die Dichte des Rubins, das habe ich hier schon mal angeschrieben, ist gegeben, ist gerade vier Gramm pro Kubikzentimeter. Und die Dichte ist gegeben als Masse pro Volumen. Und ähm die Masse kenne ich nicht, die brauche ich, aber ich kenne das Volumen, das habe ich ja gerade ausgerechnet. Das ist ja gerade 2/3cm3. Und die Maßeinheit für die Masse sind Gramm. Und wenn ich jetzt mal 2/3cm3 rechne, habe ich da stehen, dass die Masse gerade 4*2/3=8/3 – Kubikzentimeter kürzt sich raus - also 8/3g und das sind gerade 2 2/3g. So viel wiegt also dieser Rubin. Und mit der Masse kann ich die Karatzahl berechnen, weil alle 0,2g gerade einem Karat entsprechen. Das wiederum heißt, wenn ich das hier mit fünf multipliziere, bekomme ich die Karatzahl des Rubins und die ist gerade 13 1/3 Karat. Das heißt, der Rubin, mit dem ich angefangen habe, also der hier, ein Oktaeder im Raum, hat 13 1/3 Karat. Gut, ich fasse nochmal kurz zusammen, was ich in diesem Video gemacht habe. Ich habe mir am Beispiel eines Rubins Oktaeder im Raum angeschaut. Oktaeder sind Doppelpyramiden, in demm Beispiel mit einer quadratischen Grundfläche. Habe zuerst den Oberflächeninhalt berechnet mit dem Vektorprodukt und habe in dem Beispiel 4,47cm2 herausbekommen. Und die Volumenberechnung geht über das sogenannte Spatprodukt, das steht hier nochmal angeschrieben. Und wenn ich dann das Volumen kenne, in dem Fall 2/3cm3, kann ich damit über die Dichteformel die Masse ausrechnen und mit der Masse in dem Beispiel unsere Karatzahl, das war ja gerade 13 1/3. Nun hoffe ich, dass du alles gut verstehen konntest und danke dir für deine Aufmerksamkeit. Wie immer freue ich mich über Fragen und Anregungen. Bis zum nächsten Mal, dein Frank.

4 Kommentare
  1. Kommst du aus Australien ?😅😅😅
    Alice
    PS: Das wäre ja wirklich cool 😎.Ich komme aus Köln .

    Von Hässlon, vor etwa 3 Jahren
  2. Lieber Vidusen S. wir erklären dir mal was ein Vektor ist:
    Ein Vektor ist ein mathematisches Objekt, das eine Parallelverschiebung um einen festen Betrag in eine bestimmte Richtung beschreibt. In der Physik verwendet man Vektoren auch zur Darstellung von Größen, denen neben einem Betrag auch eine Richtung zugeordnet ist. ... Vektoren sind Elemente eines Vektorraums.

    Von Tilly, vor mehr als 3 Jahren
  3. Wir sind gerademal in der 6ten Klasse und finden das so einfach wie 1+1 !!!!!
    In Australien wo wir herkommen lernt man das in der 3ten Klasse!!!

    Von Tilly, vor mehr als 3 Jahren
  4. Was ist ein wektor

    Von Vidusen S., vor etwa 6 Jahren

Oktaeder im Raum – Oberflächeninhalt und Volumen Übung

Du möchtest dein gelerntes Wissen anwenden? Mit den Aufgaben zum Video Oktaeder im Raum – Oberflächeninhalt und Volumen kannst du es wiederholen und üben.
30 Tage kostenlos testen
Mit Spaß Noten verbessern
und vollen Zugriff erhalten auf

9.269

sofaheld-Level

6.600

vorgefertigte
Vokabeln

8.180

Lernvideos

38.662

Übungen

33.472

Arbeitsblätter

24h

Hilfe von Lehrkräften

laufender Yeti

Inhalte für alle Fächer und Klassenstufen.
Von Expert*innen erstellt und angepasst an die Lehrpläne der Bundesländer.

30 Tage kostenlos testen

Testphase jederzeit online beenden