Innenwinkelsummen von Vielecken
Die Innenwinkelsumme von Vielecken wird durch die Formel $(n-2)\cdot 180^\circ$ berechnet. Dieses Konzept hilft bei der Bestimmung der Innenwinkelsumme für Vielecke mit unterschiedlicher Seitenanzahl. Entdecke anhand von Beispielen wie Dreiecken, Sechsecken und Siebenecken die vielfältigen Anwendungen dieser Formel! Interessiert? Vertiefe dein Verständnis in unserem Text!
- Was ist die Innenwinkelsumme von Vielecken?
- Innenwinkelsumme von Vielecken – Herleitung
- Innenwinkelsumme von Vielecken – Beispiele

in nur 12 Minuten? Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
-
5 Minuten verstehen
Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.
92%der Schüler*innen hilft sofatutor beim selbstständigen Lernen. -
5 Minuten üben
Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.
93%der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert. -
2 Minuten Fragen stellen
Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.
94%der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.
Innenwinkelsummen von Vielecken Übung
-
Bestimme die korrekten Aussagen zur Innenwinkelsumme von Vielecken.
TippsHier wurde ein $7$-Eck vom Mittelpunkt aus in Dreiecke aufgeteilt.
Bei der Aufteilung in Dreiecke von einer Ecke aus, müssen Begrenzungslinien von einer beliebigen Ecke zu allen anderen Ecken gezogen werden. Nur zu den direkt nebenliegenden Ecken werden keine Begrenzungslinien gezogen.
Die Innenwinkelsumme des $7$-Ecks beträgt $900^{\circ}$.
LösungDiese Aussagen sind falsch:
- „Vom Mittelpunkt eines $n$-Ecks aus, kannst du es in $n-2$ Dreiecke aufteilen.“
- „Die Innenwinkelsumme eines $n$-Ecks ist $I=(n-1) \cdot 180^{\circ}$“
Diese Aussagen sind richtig:
- „Beginnst du in einer Ecke eines Sechsecks, kannst du es in $4$ Dreiecke aufteilen.“
- „Die Innenwinkelsumme eines $6$-Ecks beträgt $720^{\circ}$.“
- „Die Innenwinkelsumme ist die Summe aller Winkel im Inneren des Vielecks, die von den Begrenzungslinien aufgespannt werden.“
-
Bestimme die Innenwinkelsumme des Siebenecks.
TippsVom Mittelpunkt eines $n$-Ecks aus, kannst du es in $n$ Dreiecke aufteilen.
Der Mittelpunktswinkel eines Vielecks ist nicht Teil der Innenwinkelsumme.
LösungDen Lückentext kannst du so vervollständigen:
„Zuerst teilt sie das Siebeneck vom Mittelpunkt aus in $7$ Dreiecke auf. Sie weiß, dass jedes Dreieck eine Innenwinkelsumme von $180^{\circ}$ hat. Alle Dreiecke zusammen haben also eine Innenwinkelsumme von:
$7 \cdot 180^{\circ}= 1260^{\circ}$“
- Da sie die Dreiecke vom Mittelpunkt aus einzeichnet, erhält sie hier $7$ Stück.
$1260^{\circ}-360^{\circ}=900^{\circ}$“
- Da der Mittelpunktswinkel nicht zum Innenwinkel gehört, muss sie diesen von der Rechnung abziehen.
$I=(n-2) \cdot 180^{\circ}$
bestätigen. Setzt sie die Anzahl der Ecken $n=7$ ein, erhält sie:
$I=5 \cdot 180^{\circ}=900^{\circ}$
Beide Wege kommen also auf das gleiche Ergebnis.“
-
Erschließe die korrekten Aussagen zu diesem Siebeneck.
TippsDer Mittelpunktswinkel entspricht einer kompletten Umdrehung eines Kreises.
Jedes $\beta$-$\alpha$-Paar addiert sich zu $180^{\circ}$ .
$\beta_i + \alpha_i=180^{\circ}$
LösungDiese Aussage ist falsch:
„Gilt $\alpha_1=175^{\circ}$ und $\alpha_2=175^{\circ}$, dann muss jeder der anderen $\alpha$-Winkel gleich $110^{\circ}$ sein.“
- Diese Winkelangaben addieren sich zwar korrekt zu $900^{\circ}$, es könnte aber auch jede beliebige Kombination an Winkeln, die sich zu dieser Summe addieren, vorkommen.
„Summierst du über alle $\alpha$, erhältst du $900^{\circ}$.“
- Die Innenwinkel aller Siebenecke addieren sich zu $900^{\circ}$.
- Alle $\beta$-Winkel addieren sich zu einer kompletten Umdrehung. Das entspricht dem Mittelpunktswinkel von $360^{\circ}$.
- Diese Kombination an Winkeln addiert sich zur korrekten Summe.
- Da du die Summe aller Innenwinkel kennst, kannst du aus den gegebenen $\alpha$-Winkeln den letzten $\alpha$-Winkel berechnen. Außerdem addiert sich jedes $\beta$-$\alpha$-Paar zu $180^{\circ}$. $\beta_i + \alpha_i=180^{\circ}$
-
Ermittle die korrekten Winkel in diesen Vielecken.
TippsDie Innenwinkelsumme eines $n$-Ecks ist $I=(n-2) \cdot 180^{\circ}$.
Ein Rechteck ist ein Viereck, bei dem alle Winkel gleich groß sind.
LösungMit folgenden Überlegungen kannst du die Lösung bestimmen:
Die Innenwinkelsumme eines $n$-Ecks ist $I=(n-2) \cdot 180^{\circ}$.
Die Winkelsumme aller $\beta$ ist $360^{\circ}$.
An jeder Ecke gilt: $\alpha + \beta= 180^{\circ}$.
Ein Rechteck ist ein Viereck, bei dem alle Winkel gleich groß sind.
- Für das Fünfeck gilt:
Der Mittelpunktswinkel beträgt: $360^{\circ}$.
Gilt $\alpha_1=\alpha_2=\alpha_3$ und $\alpha_4=\alpha_5=120^{\circ}$, dann ist $\alpha_1=100^{\circ}$.
- Beim Sechseck erhältst du:
Für $\alpha_1=100^{\circ}$, gilt $\beta_1=80^{\circ}$.
Gilt $\beta_1=\beta_2=\beta_3=50^{\circ}$ und $\beta_4=\beta_5=60^{\circ}$, dann ist $\beta_6=90^{\circ}$.
- Beim Rechteck ergibt sich:
und $\beta=90^{\circ}$.
-
Bestimme die Innenwinkelsumme der Vielecke.
TippsUm den Innenwinkel der Vielecke zu bestimmen, musst du zuerst die Anzahl der Ecken, die wir mit $n$ bezeichnen, zählen.
Anschließend setzt du $n$ in die Formel für die Innenwinkelsumme
$I=(n-2) \cdot 180^{\circ}$ ein.
LösungUm den Innenwinkel der Vielecke zu bestimmen, musst du die Ecken $n$ zählen und in die Formel für die Innenwinkelsumme
$I=(n-2) \cdot 180^{\circ}$
einsetzen.
Damit erhältst du:
- Ein Viereck hat eine Innenwinkelsumme von $I=360^{\circ}$, denn $n=4$ und somit ist $I= (4-2) \cdot 180^{\circ} = 2 \cdot 180^{\circ} = 360^{\circ}$.
- Die Innenwinkelsumme eines Fünfecks beträgt $I=640^{\circ}$.
- Ein Sechseck hat eine Innenwinkelsumme von $I=720^{\circ}$.
- Die Innenwinkelsumme eines Siebenecks beträgt $I=900^{\circ}$.
-
Erschließe die korrekten Aussagen zu regelmäßigen Sechsecken.
TippsDie Formel für den Flächeninhalt eines Dreiecks lautet: $A=\frac{1}{2} g h$. Hier entspricht das $A=\frac{1}{2} r a$. Setzt du die Größen in die Gleichung ein, erhältst du das Ergebnis.
Das Zeichen $\approx$ kannst Du benutzen wie ein $=$-Zeichen. Es gibt nur an, dass das Ergebnis nicht ganz exakt ist.
LösungDie Lücken kannst du folgendermaßen füllen:
„Die Innenwinkel $\alpha$ betragen $120^{\circ}$.“
- Die Innenwinkel sind alle gleich groß und addieren sich zu: $720^{\circ}$
- Die Innenwinkel eines Dreiecks addieren sich zu $180^{\circ}$. Die Basiswinkel jedes dieser Dreiecke betragen die Hälfte der Innenwinkel des Sechsecks. Deshalb müssen alle Innenwinkel der Dreiecke $60^{\circ}$ groß sein.
- Der Mittelpunktswinkel von $360^{\circ}$ wird in sechs gleich große Teile aufgeteilt.
- Diesen Wert erhältst du durch Einsetzen von $a= 6~\text{cm}$ in die Formel $r \approx 0,9 \cdot a$. Daher ist $r \approx 0,9 \cdot a \approx 0,9 \cdot 6~\text{cm} \approx 5,4 ~\text{cm}$.
- Die Formel für den Flächeninhalt eines Dreiecks lautet: $A=\frac{1}{2} g h$. Hier entspricht das $A=\frac{1}{2} r a$. Setzt du die Größen in die Gleichung ein, erhältst du das Ergebnis.
- Das Sechseck besteht aus sechs dieser Dreiecke. Du musst also den Flächeninhalt eines Dreiecks mit sechs multiplizieren.
9.369
sofaheld-Level
6.600
vorgefertigte
Vokabeln
8.224
Lernvideos
38.691
Übungen
33.496
Arbeitsblätter
24h
Hilfe von Lehrkräften

Inhalte für alle Fächer und Klassenstufen.
Von Expert*innen erstellt und angepasst an die Lehrpläne der Bundesländer.
Testphase jederzeit online beenden
Beliebteste Themen in Mathematik
- Römische Zahlen
- Prozentrechnung
- Prozentrechnung - Übungen
- Primzahlen
- Geometrische Lagebezeichnungen
- Was ist eine Ecke?
- Rechteck
- Was ist eine Gleichung?
- Pq-Formel
- Binomische Formeln
- Trapez
- Flächeninhalt – Übungen
- Volumen Zylinder
- Potenzgesetze – Übungen
- Umfang Kreis
- Zehnerzahlen vergleichen und ordnen – Übungen
- Quadrat
- Zahlen sortieren – Übungen
- Division
- Binomische Formeln – Übungen
- Raute
- Brüche umwandeln Übungen
- Parallelogramm
- Ungleichungen – Übungen
- Polynomdivision
- Zahlen bis 1000 ordnen – Übungen
- Was Ist Eine Viertelstunde
- Terme mit Variablen aufstellen – Übungen
- Prisma
- Die Grundrechenarten – Übungen
- Mitternachtsformel
- Äquivalenzumformung
- Grundrechenarten Begriffe
- Größer Kleiner Zeichen
- Dreiecksarten
- Punkt-vor-Strich und Klammern-zuerst-Regel
- Aufbau von Dreiecken
- Quader
- Zahlen runden – Übungen
- Satz Des Pythagoras
- Ziffern und Stellenwerte – Übungen
- Dreieck Grundschule
- Koordinatensystem – Übungen
- Erste Binomische Formel
- Kreis
- Trigonometrie
- Trigonometrische Funktionen
- Standardabweichung
- Quadratische Gleichungen – Übungen
- Flächeninhalt