Über 1,6 Millionen Schüler*innen nutzen sofatutor!
  • 93%

    haben mit sofatutor ihre Noten in mindestens einem Fach verbessert

  • 94%

    verstehen den Schulstoff mit sofatutor besser

  • 92%

    können sich mit sofatutor besser auf Schularbeiten vorbereiten

Hypothesentest – Fehler erster und zweiter Art

Alle Inhalte sind von Lehrkräften & Lernexperten erstellt
Alle Inhalte sind von Lehrkräften & Lernexperten erstellt
Du willst ganz einfach ein neues Thema lernen
in nur 12 Minuten?
Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
  • Das Mädchen lernt 5 Minuten mit dem Computer 5 Minuten verstehen

    Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.

    92%
    der Schüler*innen hilft sofatutor beim selbstständigen Lernen.
  • Das Mädchen übt 5 Minuten auf dem Tablet 5 Minuten üben

    Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.

    93%
    der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert.
  • Das Mädchen stellt fragen und nutzt dafür ein Tablet 2 Minuten Fragen stellen

    Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.

    94%
    der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.
Bewertung

Ø 5.0 / 1 Bewertungen
Die Autor*innen
Avatar
Team Digital
Hypothesentest – Fehler erster und zweiter Art
lernst du in der 11. Klasse - 12. Klasse - 13. Klasse

Hypothesentest – Fehler erster und zweiter Art Übung

Du möchtest dein gelerntes Wissen anwenden? Mit den Aufgaben zum Video Hypothesentest – Fehler erster und zweiter Art kannst du es wiederholen und üben.
  • Verorte den Fehler erster und zweiter Art in der Tabelle.

    Tipps

    Setze ein Häkchen, wenn kein Fehler passiert.

    Ein Fehler 2. Art liegt vor, wenn die $H_0$ angenommen wird, obwohl $H_0$ nicht zutrifft.

    Lösung

    Bei einem Hypothesentest wird mit einer Entscheidungsregel über die Nullhypothese $H_0$ entschieden:
    Entweder wird $H_0$ angenommen oder $H_0$ wird (zugunsten der Alternativhypothese $H_1$) verworfen.

    Da nicht bekannt ist, ob die Nullhypothese zutrifft oder nicht, kann diese Entscheidung fehlerhaft sein:

    • Ein Fehler 1. Art liegt vor, wenn die Nullhypothese abgelehnt wird, obwohl sie zutrifft.
    • Ein Fehler 2. Art liegt vor, wenn die Nullhypothese angenommen wird, obwohl sie nicht zutrifft.
    • Kein Fehler liegt vor, wenn die $H_0$ angenommen wird und zutrifft oder wenn $H_0$ nicht zutrifft und abgelehnt wird.

  • Definiere die folgenden Begriffe.

    Tipps

    Ein Fehler erster Art wird auch $\alpha$-Fehler genannt.

    Ein Fehler zweiter Art liegt vor, wenn $x \in A$, obwohl $H_0$ nicht zutrifft.

    Lösung

    Trifft $H_0$ zu und liegt die Trefferzahl $x$ in der Stichprobe im Annahmebereich $A$, ist die Schlussfolgerung korrekt. Dasselbe gilt, wenn $H_0$ nicht zutrifft und $x$ im Ablehnungsbereich $ \overline A$ ist.

    Ist jedoch $x$ im Ablehnungsbereich $\overline A$, obwohl $H_0$ zutrifft, ist die Schlussfolgerung aus dem Test falsch. Man spricht von einem Fehler 1. Art ($\alpha$-Fehler).
    Ist umgekehrt $x$ nicht im Annahmebereich $A$, obwohl $H_0$ nicht zutrifft, liefert die Entscheidungsregel einen Fehler 2. Art ($\beta$-Fehler).
    Die Wahrscheinlichkeit für einen Fehler 1. Art wird mit $\alpha$ bezeichnet, die für einen Fehler 2. Art mit $\beta$.
    Außerdem ist $P(\overline A)=\alpha$ und $P(A)=1-\alpha$.
    Für $\beta$ gibt es keine solche Formel, weil im Fall, dass $H_0$ nicht zutrifft, der korrekte Wert von $p$ unbekannt ist.

    Wir erhalten also folgende korrekte Zuordnung:

    • Wahrscheinlichkeit, dass $x \in \overline A$, obwohl $H_0$ zutrifft: Irrtumswahrscheinlichkeit $\alpha$
    • Wahrscheinlichkeit, dass $x \in A$, obwohl $H_0$ nicht zutrifft: Irrtumswahrscheinlichkeit $\beta$
    • Nullhypothese wird verworfen, obwohl sie zutrifft: Fehler 1. Art
    • Nullhypothese wird beibehalten, obwohl sie nicht zutrifft: Fehler 2. Art

  • Interpretiere das Testergebnis.

    Tipps

    Die Irrtumswahrscheinlichkeit $\alpha$ ist höchstens so groß wie das Signifikanzniveau $S$.

    Um die Irrtumswahrscheinlichkeit $\beta$ zu berechnen, müssten wir die tatsächliche Trefferwahrscheinlichkeit $p$ kennen. Aber dieser Wert ist unbekannt, wenn ${p \neq 0,\!7}$ ist.

    Die Irrtumswahrscheinlichkeit $\beta$ kannst du verkleinern, indem du den Stichprobenumfang $n$ vergrößerst.

    Lösung

    Bei jedem Hypothesentest ist die Irrtumswahrscheinlichkeit $\alpha$ des Fehlers erster Art höchstens so groß wie das Signifikanzniveau $S$. In unserem Test ist $S=5~\%$, also $\alpha \leq 5~\%$. Vergrößerst du den Annahmebereich $A$, wird die Irrtumswahrscheinlichkeit $\alpha$ kleiner. Änderst du den Annahmebereich zu $A=[0;65]$, wird $A$ größer und $\alpha$ kleiner.


    Um die Irrtumswahrscheinlichkeit $\beta$ eines Fehlers 2. Art zu berechnen, müssten wir die tatsächliche Trefferwahrscheinlichkeit $p$ kennen. Bei einem Fehler 2. Art wissen wir aber nur, welchen Wert $p$ nicht annimmt, nämlich $p \neq 0,7$. Daher ist die Irrtumswahrscheinlichkeit $\beta$ unbekannt. Wir wissen allerdings: $\beta$ wird größer, wenn du den Ablehnungsbereich verkleinerst. Aus dem Histogramm kannst du ablesen: ${\overline A=[64;80]}$. Änderst du den Ablehnungsbereich zu ${\overline A = [66;80]}$, wird $\overline A$ kleiner und $\beta$ größer.


    Erhöhst du den Stichprobenumfang von $n=80$ auf $n=100$, verändern sich sowohl der Annahmebereich als auch der Ablehnungsbereich. Die Irrtumswahrscheinlichkeit $\beta$ wird dabei kleiner.

  • Ermittle die Art des Fehlers.

    Tipps

    Ist $k \geq 103$, wird die Nullhypothese verworfen, auch wenn sie zutrifft.

    Wird die Nullhypothese angenommen, obwohl sie nicht zutrifft, liegt ein Fehler 2. Art vor.

    Lösung

    Wir wissen, dass der Annahmebereich $A=[0;102]$ und der Ablehnungsbereich $\overline A=[103;120]$ ist. Die Entscheidungsregel besagt also:

    • Ist $k \in [0;102]$, wird $H_0$ angenommen.
    • Ist $k \in [103;120]$, wird $H_0$ verworfen.

    Ein Fehler 1. Art liegt vor, wenn $k \in \overline A$, obwohl $H_0$ zutrifft. Bei einem Fehler 2. Art ist $k \in A$, obwohl $H_0$ nicht zutrifft. Wir erhalten somit folgende Beurteilung:

    • Die Trefferzahl beträgt $k=80$ und $H_0$ trifft nicht zu: Fehler 2. Art
    • Die Trefferzahl beträgt $k=102$ und $H_0$ trifft zu:
    • Die Trefferzahl beträgt $k=103$ und $H_0$ trifft nicht zu:
    • Die Trefferzahl beträgt $k=111$ und $H_0$ trifft zu: Fehler 1. Art

  • Vervollständige die Abbildung zum Hypothesentest.

    Tipps

    Der Annahmebereich ist im Histogramm grün markiert.

    Das Signifikanzniveau wird als Prozentsatz angegeben.

    Die Irrtumswahrscheinlichkeit $\alpha$ ist die Wahrscheinlichkeit des Ablehnungsbereiches.

    Lösung

    Ein Hypothesentest ist durch vier wichtige Größen bestimmt:

    • Das Signifikanzniveau $\boldsymbol{S}$ wird vor der Durchführung des Tests festgelegt und bestimmt den Annahme- und den Ablehnungsbereich. In unserem Beispiel ist $S=5~\%$.
    • Der Annahmebereich $\boldsymbol{A}$ besteht aus denjenigen Werten der Stichprobe, die zur Annahme der Nullhypothese führen. Im Histogramm ist der Annahmebereich $A$ grün dargestellt. In diesem Beispiel ist $A=[0;86]$.
    • Der Ablehnungsbereich $\boldsymbol{\overline A}$ besteht aus denjenigen Werten der Stichprobe, bei denen wir die Nullhypothese verwerfen. Dieser Bereich wird rot dargestellt. Im Beispiel ist $\overline A=[87;100]$.
    • Die Irrtumswahrscheinlichkeit $\boldsymbol{\alpha}$ ist die Wahrscheinlichkeit des Ablehnungsbereiches, also $\alpha = P(\overline A)$. Der Test wird so eingerichtet, dass gilt: $\alpha \leq S$.

  • Entscheide, ob die folgenden Aussagen wahr sind oder nicht.

    Tipps

    Für die Irrtumswahrscheinlichkeit $\beta$ kann es keine einfache Formel geben.

    Der genaue Wert von $\alpha$ hängt nicht nur von $S$ ab, sondern auch von $n$ und $p$.

    Lösung

    Folgende Aussagen sind wahr:


    • Die Irrtumswahrscheinlichkeit $\beta$ hängt von dem unbekannten Wert $p$ ab.
    Denn wenn $H_0$ nicht zutrifft, ist der korrekte Wert von $p$ unbekannt. Von diesem Wert hängt aber die Irrtumswahrscheinlichkeit $\beta$ direkt ab.


    • Die Irrtumswahrscheinlichkeit $\beta$ wird größer, wenn $\alpha$ kleiner wird.
    Je kleiner der Ablehnungsbereich $\overline A$ ist, desto eher kann es passieren, dass die Nullhypothese angenommen wird, obwohl sie nicht zutrifft. Der Fehler 2. Art wird also wahrscheinlicher.



    Folgende Aussagen sind unwahr:


    • Die Irrtumswahrscheinlichkeit $\beta$ ist die Gegenwahrscheinlichkeit der Irrtumswahrscheinlichkeit $\alpha$.
    Die Irrtumswahrscheinlichkeit $\beta$ ist nicht durch eine einfache Formel berechenbar, denn sie hängt von dem Wert $p$ ab. Trifft jedoch $H_0$ nicht zu, ist dieser Wert unbekannt.


    • Um die Irrtumswahrscheinlichkeit $\beta$ berechnen zu können, wird nur der Wert $p$ aus der Nullhypothese benötigt.
    Stattdessen wird der korrekte Wert von $p$ benötigt. Im Fall eines Fehlers 2. Art wissen wir aber nur, dass der Wert aus der Nullhypothese falsch ist. Den korrekten Wert kennen wir im Allgemeinen nicht.


    • Wird der Stichprobenumfang $n$ erhöht, wird automatisch die Irrtumswahrscheinlichkeit $\alpha$ kleiner.
    Die Irrtumswahrscheinlichkeit $\alpha$ ist durch das Signifikanzniveau $S$ und den Stichprobenumfang $n$ festgelegt. Der Wert von $\alpha$ ändert sich kaum, wenn $n$ erhöht und $S$ festgehalten wird. Er kann allerdings etwas größer oder kleiner werden.
30 Tage kostenlos testen
Mit Spaß Noten verbessern
und vollen Zugriff erhalten auf

7.919

sofaheld-Level

6.601

vorgefertigte
Vokabeln

7.907

Lernvideos

36.936

Übungen

34.195

Arbeitsblätter

24h

Hilfe von Lehrer*
innen

laufender Yeti

Inhalte für alle Fächer und Klassenstufen.
Von Expert*innen erstellt und angepasst an die Lehrpläne der Bundesländer.

30 Tage kostenlos testen

Testphase jederzeit online beenden