Über 1,6 Millionen Schüler*innen nutzen sofatutor!
  • 93%

    haben mit sofatutor ihre Noten in mindestens einem Fach verbessert

  • 94%

    verstehen den Schulstoff mit sofatutor besser

  • 92%

    können sich mit sofatutor besser auf Schularbeiten vorbereiten

Graphisches Ableiten

Du willst ganz einfach ein neues Thema lernen
in nur 12 Minuten?
Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
  • Das Mädchen lernt 5 Minuten mit dem Computer 5 Minuten verstehen

    Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.

    92%
    der Schüler*innen hilft sofatutor beim selbstständigen Lernen.
  • Das Mädchen übt 5 Minuten auf dem Tablet 5 Minuten üben

    Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.

    93%
    der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert.
  • Das Mädchen stellt fragen und nutzt dafür ein Tablet 2 Minuten Fragen stellen

    Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.

    94%
    der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.
Bewertung

Ø 4.3 / 59 Bewertungen
Die Autor*innen
Avatar
Mathe-Team
Graphisches Ableiten
lernst du in der 11. Klasse - 12. Klasse - 13. Klasse

Graphisches Ableiten Übung

Du möchtest dein gelerntes Wissen anwenden? Mit den Aufgaben zum Video Graphisches Ableiten kannst du es wiederholen und üben.
  • Bestimme die Anzahl der Nullstellen von $f'$.

    Tipps

    Die Steigung von $f$ bestimmt das Vorzeichen von $f'$:

    $\begin{array}{c|c} f(x)&f'(x) \\ \hline \text{positive Steigung}&f'(x)>0 \\ \hline \text{negative Steigung}&f'(x)<0 \end{array}$

    Die Steigung in einem Extrempunkt ist immer $0$. Dort hat die Ableitungsfunktion also eine Nullstelle.

    Zähle die Anzahl der Extrempunkte.

    Lösung

    Da die Steigung von $f$ an jeder Stelle den Verlauf von $f'$ bestimmt, sind Nullstellen von $f'$ ein ganz besonderer Fall.

    Denn $f'$ besitzt nur dort Nullstellen, wo $f$ eine Steigung von $0$ aufweist.

    Das ist nur in Extrempunkten der Fall. Wie wir sehen, besitzt der Graph von $f$ genau zwei Tiefpunkte und einen Hochpunkt. Damit muss der Graph der Ableitungsfunktion genau an diesen Stellen Nullstellen besitzen.

  • Bestimme den Graphen der Ableitungsfunktion.

    Tipps

    Der Zusammenhang zwischen der Steigung der Ausgangsfunktion und dem Graphenverlauf der Ableitungsfunktion lautet:

    $\begin{array}{c|c} f(x)&f'(x) \\ \hline \text{positive Steigung}&f'(x)>0 \\ \hline \text{negative Steigung}&f'(x)<0 \end{array}$

    Bei einem Extrempunkt der Ausgangsfunktion besitzt die Ableitungsfunktion eine Nullstelle.

    Die Funktionsgleichung lautet $f(x)=(x-1)^2+1$. Diese könntest du auch alternativ rechnerisch ableiten.

    Lösung

    Der Graph der Ableitungsfunktion gibt uns Informationen über die Steigung und Extrema der Ausgangsfunktion.

    Da die Ausgangsfunktion $f$ einen Tiefpunkt hat, muss der Graph der Ableitung dort eine Nullstelle besitzen. Das trifft nur auf drei der Graphen zu. Übrig bleiben also nur noch die Graphen 1, 3 und 4.

    Das nächste Kriterium ist die Steigung von $f$. Bis zum Tiefpunkt fällt $f$, d.h., dort müsste seine Ableitung im negativen Bereich verlaufen.

    Das trifft nur auf den Graphen 3 zu. Was wir hier gemacht haben, nennt sich grafisches Ableiten: Wir bestimmen den Graphen der Ableitungsfunktion allein anhand des Verlaufes der Ursprungsgraphen, ohne zu rechnen.

    Alternativ kannst du natürlich auch rechnen. Wir kennen die Funktionsgleichung $f(x)=(x-1)^2+1$, was man beispielsweise an der Lage des Scheitelpunktes erkennen. Diese lösen wir jetzt mit Hilfe der zweiten binomischen Formel ein wenig auf und leiten sie dann ab:

    $f(x)=x^2 - 2x + 1 + 1$

    $f'(x)=2x-2$.

    Da der Ableitungsgraph einer Parabel immer eine Gerade ist, können wir den Schnittpunkt mit der y-Achse ablesen. Dieser müsste bei $(0|-2)$ liegen, was nur auf den dritten Graphen zutrifft.

  • Entscheide, in welchen Diagrammen die Funktion und ihre Ableitungsfunktion dargestellt sind.

    Tipps

    Bei Extrempunkten der Ausgangsfunktion besitzt die Ableitungsfunktion immer eine Nullstelle.

    Fällt der Graph von $f$, verläuft der Ableitungsgraph im negativen Bereich.

    Zwei der angegebenen Diagramme zeigen eine Funktion und ihre Ableitungsfunktion.

    Lösung

    Gehen wir die Graphen der Reihe nach durch.

    Beim ersten Bild ist die Parabel nach unten geöffnet. Ihre Steigung bis zum Hochpunkt ist positiv, weshalb der Ableitungsgraph in diesem Bereich noch positiv verlaufen müsste. Da er aber im negativen Bereich ist, kann das kein Ableitungsgraph zur Ursprungsfunktion sein.

    Beim zweiten Bild ist es ähnlich: Die Steigung der Parabel ist bis zum Tiefpunkt negativ. Hier müsste der Ableitungsgraph also im negativen Bereich verlaufen. Da er sich im positiven Bereich befindet, ist auch das kein Ableitungsgraph zur Ursprungsfunktion.

    In Bild $3$ sehen wir eine negative Steigung der Parabel bis zum Tiefpunkt. Dort verläuft die Gerade im negativen Bereich. Ab dem Tiefpunkt beginnt die Parabel positiv zu steigen und auch die Gerade verläuft ab hier im positiven Bereich. So weit so gut. Auch die Nullstelle, die der Ableitungsgraph bei jedem Extrempunkt der Ausgangsfunktion besitzen muss, ist an der richtigen Stelle vorhanden. Dies ist der Ableitungsgraph zur vorgegebenen quadratischen Funktion.

    Im letzten Bild verhält es sich genauso wie in Bild $3$. Diesmal sind Parabel und Gerade nur weiter nach rechts verschoben. Es sind also wieder die Graphen einer Funktion und ihrer Ableitungsfunktion dargestellt.

  • Ordne den Funktionsgraphen den Graph ihrer Ableitungsfunktion zu.

    Tipps

    Ein Hinweis zum Graphenverlauf der Ableitungsfunktion im Bezug auf die Steigung $m$ der Ausgangsfunktion:

    $\begin{array}{c|c} f(x)&f'(x) \\ \hline \text{positive Steigung}&f'(x)>0 \\ \hline \text{negative Steigung}&f'(x)<0 \end{array}$

    Bei einem Extrempunkt der Ausgangsfunktion besitzt die Ableitungsfunktion eine Nullstelle.

    Hier ein Beispiel für eine Parabel und die Gerade ihrer Ableitungsfunktion.

    Lösung

    Fangen wir mit dem einfachsten Bild an: die Parabel, die nach unten geöffnet ist. Ihr Partner muss die in ihrer Steigung fallende Gerade sein, weil Geraden immer die Ableitungsgraphen von Parabeln bilden.

    Als nächstes die Funktion, die nur steigt und durch den Ursprung verläuft. Da ihre Steigung immer positiv ist, muss der Graph ihrer Ableitung komplett im positiven Bereich liegen. Das trifft nur auf die Parabel zu.

    Nun kommen wir zu der Funktion, die erst einen Hochpunkt und kurz darauf einen Tiefpunkt im Ursprung besitzt. Ihr Ableitungsgraph muss also an diesen Stellen Nullstellen aufweisen. Es bleibt nur noch ein Graph mit zwei Nullstellen übrig.

    Das letzte Pärchen ergibt sich von selbst: Übrig bleibt die Ausgangsfunktion in Form eines W, mit drei Extrempunkten. Der letzte Partner, der in Frage kommt, besitzt passend dazu drei Nullstellen.

    Du kannst statt der Nullstellen auch die Steigung der Ausgangsfunktion mit der Lage des Ableitungsgraphen an diesen Stellen vergleichen, denn diese verhalten sich immer so:

    $\begin{array}{c|c} f(x)&f'(x) \\ \hline \text{positive Steigung}&f'(x)>0 \\ \hline \text{negative Steigung}&f'(x)<0 \end{array}$

  • Vervollständige die Aussagen zum Graphen der Ableitungsfunktion.

    Tipps

    Die Steigung von $f$ bestimmt das Vorzeichen der Ableitungsfunktion $f'$:

    $\begin{array}{c|c} f(x)&f'(x) \\ \hline \text{positive Steigung}&f'(x)>0 \\ \hline \text{negative Steigung}&f'(x)<0 \end{array}$

    Bei Extrempunkten der Ausgangsfunktion weist die Ableitungsfunktion immer eine Nullstelle auf.

    Lösung

    Im Bild siehst du die Ausgangsfunktion und ihre dazugehörige Ableitungsfunktion.

    Der Graph der Ableitung ist eine Gerade. Links von der y-Achse verläuft sie im negativen Bereich, da die Ausgangsfunktion dort eine negative Steigung besitzt.

    Im Ursprung des Koordinatensystems hat der Graph von $f$ einen Tiefpunkt, also dort ist die Steigung $0$. Deshalb besitzt $f'$ dort eine Nullstelle.

    Nach dem Tiefpunkt wird die Steigung der quadratischen Funktion positiv, weshalb auch $f'$ ab dort im positiven Bereich verläuft.

  • Ermittle die richtigen Eigenschaften von $f'$ anhand des vorgegebenen Graphens $f$.

    Tipps

    Die Steigung von $f$ bestimmt das Vorzeichen von $f'$:

    $\begin{array}{c|c} f(x)&f'(x) \\ \hline \text{positive Steigung}&f'(x)>0 \\ \hline \text{negative Steigung}&f'(x)<0 \end{array}$

    Eine Definitionslücke des Ausgangsgraphen bedeutet ebenfalls eine Definitionslücke beim Ableitungsgraphen.

    Ob die Ableitungsfunktion wächst oder nicht, kannst du gedanklich nachvollziehen, wenn du eine Tangente an den Graphen legst und die Steigung der Tangente betrachtest.

    Der Graph gehört zu der Funktion

    $f(x)=\frac{1}{x}$.

    Die Ableitungsfunktion lautet

    $f'(x)=-\frac{1}{x^2}$.

    Lösung

    Du siehst im Bild den Graphen zur Ableitungsfunktion $f'$.

    Er verläuft komplett unterhalb der x-Achse, also im negativen Bereich. Das ist deshalb so, weil der Ausgangsgraph permanent fällt, d.h., immer eine negative Steigung aufweist.

    Die Definitionslücke behält der Ableitungsgraph auch bei.

    Der Graph zu $f$ besitzt - auch wenn es vielleicht so aussehen mag - keinerlei Extrempunkte. Folglich kann der Ableitungsgraph auch keine Nullstellen haben.

    Der Graph von $f'$ fällt zunächst und steigt danach, was man gedanklich nachvollziehen kann, wenn man eine Tangente an den Graphen des Ursprungsgraphen legt und die Steigung der Tangente betrachtet. Der Anstieg ist zunächst relativ gering und wird sehr schnell größer, je weiter man sich von links der Definitionslücke nähert. Der Anstieg wird dann wieder geringer, je weiter man nach rechts geht.

30 Tage kostenlos testen
Mit Spaß Noten verbessern
und vollen Zugriff erhalten auf

8.090

sofaheld-Level

6.601

vorgefertigte
Vokabeln

7.922

Lernvideos

36.998

Übungen

34.261

Arbeitsblätter

24h

Hilfe von Lehrer*
innen

laufender Yeti

Inhalte für alle Fächer und Klassenstufen.
Von Expert*innen erstellt und angepasst an die Lehrpläne der Bundesländer.

30 Tage kostenlos testen

Testphase jederzeit online beenden