Über 1,6 Millionen Schüler*innen nutzen sofatutor!
  • 93%

    haben mit sofatutor ihre Noten in mindestens einem Fach verbessert

  • 94%

    verstehen den Schulstoff mit sofatutor besser

  • 92%

    können sich mit sofatutor besser auf Schularbeiten vorbereiten

Geometrische Beweise – Erklärung am Satz des Thales

Video abspielen
Du willst ganz einfach ein neues Thema lernen
in nur 12 Minuten?
Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
  • Das Mädchen lernt 5 Minuten mit dem Computer 5 Minuten verstehen

    Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.

    92%
    der Schüler*innen hilft sofatutor beim selbstständigen Lernen.
  • Das Mädchen übt 5 Minuten auf dem Tablet 5 Minuten üben

    Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.

    93%
    der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert.
  • Das Mädchen stellt fragen und nutzt dafür ein Tablet 2 Minuten Fragen stellen

    Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.

    94%
    der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.
Bewertung

Ø 4.1 / 88 Bewertungen
Die Autor*innen
Avatar
Team Digital
Geometrische Beweise – Erklärung am Satz des Thales
lernst du in der 9. Klasse - 10. Klasse - 11. Klasse - 12. Klasse - 13. Klasse

Geometrische Beweise – Erklärung am Satz des Thales Übung

Du möchtest dein gelerntes Wissen anwenden? Mit den Aufgaben zum Video Geometrische Beweise – Erklärung am Satz des Thales kannst du es wiederholen und üben.
  • Tipps

    Eine Theorie muss für alle Exemplare einer Figur wahr sein, nicht nur für ein Beispielexemplar.

    Es sind lediglich ein Zirkel und ein Lineal ohne Längenangaben als Hilfsmittel erlaubt.

    Lösung

    Folgende Aussagen über den geometrischen Beweis treffen zu:

    • Ein geometrischer Beweis beweist eine Behauptung mithilfe von Eigenschaften geometrischer Figuren und Logik.
    • Manchmal muss man bei einem geometrischen Beweis auch ein wenig rechnen oder Verhältnisse bestimmen.
    • Durch Symmetrie oder Ähnlichkeit konstruiert man etwas, das bei der Überprüfung der Behauptung weiterhilft.
    • Je mehr Eigenschaften von geometrischen Figuren man kennt, desto leichter ist es, sie bei einem geometrischen Beweis zu nutzen.

    Und folgende Aussagen treffen nicht zu:

    • Bei einem geometrischen Beweis muss man unbedingt Längen, Flächen und Winkel messen.
    Im Gegenteil: Bei einem geometrischen Beweis darfst du überhaupt nichts messen. Nur Konstruieren ist erlaubt!
    • Bei einem geometrischen Beweis reicht es aus, die Behauptung an einem Beispiel zu testen, um sie als wahr zu bestätigen.
    Die Behauptung soll nicht nur auf ein Beispiel zutreffen, sondern auf alle möglichen Fälle der Figur, um die es in der Behauptung geht. Eine Behauptung, die von einem rechtwinkligen Dreieck handelt, muss also auf alle möglichen konstruierbaren rechtwinkligen Dreiecke zutreffen. Deshalb ist es nicht ausreichend, sie durch ein Beispiel zu beweisen.

    Es ist aber sehr wohl möglich, eine Behauptung durch ein Gegenbeispiel zu widerlegen. So könntest du die Behauptung „Alle Quadrate haben einen Flächeninhalt von $1\,\text{m}^2$.“ aufstellen. Doch dann muss dir nur ein einziges Quadrat gezeigt werden, das nicht diesen Flächeninhalt hat, und du weißt: Deine Behauptung ist falsch!

  • Tipps

    Eine Strecke wird immer nach ihrem Start- und Endpunkt benannt. Die Strecke zwischen den Punkten $X$ und $Y$ wäre also $\overline{XY}$ oder $\overline{YX}$.

    Lösung

    Die Behauptung, die zu beweisen ist, lautet: „Hat man einen Halbkreis mit dem Durchmesser $\overline{AB}$ und ergänzt irgendwo auf dem Halbkreis einen dritten Punkt $C$, so bilden die Strecken $\overline{AC}$ und $\overline{BC}$ einen rechten Winkel bei $C$, egal wo $C$ liegt, solange er nicht auf $A$ oder $B$ liegt.“
    Man kann hier Symmetrie nutzen, um das zu überprüfen. Dazu wird zunächst der Kreis vervollständigt.

    Um den Kreis zu vervollständigen, benötigt man den Mittelpunkt $M$. Den findet man, indem man Kreisbogen um $A$ und $B$ zeichnet, die sich zweimal schneiden. Man verbindet diese Schnittpunkte und dort, wo die Gerade $\overline{AB}$ schneidet, liegt $M$.

    Man legt den Zirkel am Mittelpunkt an und stellt als Radius entweder $\overline{AM}$ oder $\overline{BM}$ ein. So vervollständigt man den Kreis. Mithilfe einer Punktspiegelung von $C$ an $M$ kann man dann den gegenüberliegenden Punkt $D$ bestimmen und die Gerade $\overline{CD}$ zeichnen.

    Verbindet man die vier Punkte, ergibt sich das Parallelogramm $ADBC$. Die Strecken $\overline{AC}$ und $\overline{DB}$ sowie $\overline{AD}$ und $\overline{CB}$ sind parallel zueinander. Außerdem sind die Diagonalen $\overline{AB}$ und $\overline{CD}$ gleich lang. Das bedeutet, dass $ADBC$ ein Rechteck ist.

    Da man jetzt weiß, dass hier ein Rechteck vorliegt, bezieht man weitere Eigenschaften eines Rechtecks in den Beweis ein. Zum Beispiel hat ein Rechteck $4$ rechte Winkel. Damit muss dann auch der Winkel bei $C$ ein rechter Winkel sein und der Satz des Thales ist somit bewiesen. Man sagt: „{Q. e. d.}“. (Das steht für „Quod erat demonstrandum.“)

  • Tipps

    Ein Viereck hat immer eine Innenwinkelsumme von $360^\circ$.

    Eine Raute hat vier gleich lange Seiten.

    Lösung

    Die Summe der Innenwinkel beträgt immer $180^\circ$.
    $\rightarrow$ Dreieck

    Ein Paar gegenüberliegender Winkel ist gleich groß. Eine Diagonale wird durch die andere halbiert.
    $\rightarrow$ Drachen

    Alle Winkel sind rechtwinklig und alle Seiten gleich lang.
    $\rightarrow$ Quadrat

    Mehrere Figuren sind deckungsgleich. Das heißt, sie stimmen in Form und Größe überein.
    $\rightarrow$ Kongruenz

    Diese Figur berührt jede Seite eines Vielecks von innen genau einmal.
    $\rightarrow$ Inkreis

  • Tipps

    Die Hypothenuse ist die längste Seite eines Dreiecks.

    Wenn zwei Figuren kongruent sind, bedeutet das anschaulich Folgendes: Du kannst sie mit der Schere ausschneiden und dann so übereinanderlegen, dass sie genau aufeinanderpassen, ohne dass eine Figur an den Seiten übersteht. Umgangssprachlich sind sie also „gleich groß“ bzw. einfach „gleich“.

    Lösung

    Gegeben ist dieses rechtwinklige Dreieck mit den Katheten $a$ und $b$ sowie der Hypothenuse $c$.

    Zunächst wird versucht, das Hypothenusenquadrat $c^2$ zu einem großen Quadrat zu ergänzen. Dazu werden $4$ Dreiecke verwendet, die kongruent sind zum Ausgangsdreieck. Man kann sehen, dass so ein neues, größeres Quadrat entsteht.

    Nun nimmt man die beiden Kathetenquadrate $a^2$ und $b^2$ und versucht ebenfalls, diese zu einem großen Quadrat zu ergänzen. Dazu verwendet man auch $4$ Dreiecke, die kongruent zum Ausgangsdreieck sind. $a^2$ und $b^2$ lassen sich auf diese Weise ebenso zu einem neuen, größeren Quadrat ergänzen.

    Was lässt sich daraus schließen?
    In der ersten Figur ergänzt sich die orange Fläche mit der grünen Fläche zu einem Quadrat mit der Seitenlänge $a+b$. Und in der zweiten Figur ergibt die orange Fläche mit der roten und blauen Fläche dasselbe Quadrat mit der Seitenlänge $a+b$.
    Da die orange Fläche in beiden Figuren gleich groß ist, bedeutet das: Die grüne Fläche muss genauso groß sein wie die rote und blaue Fläche zusammen.
    Damit ist der Satz des Pythagoras bewiesen. Q. e. d.

  • Tipps

    Zuerst beschreibt man die Ausgangsbedingungen, danach das Vorgehen.

    Lösung

    Davon handelt der Satz des Thales:

    Es ist ein Halbkreis gegeben. Den Durchmesser kann man zum Beispiel $\overline{AB}$ nennen. Man kann irgendwo auf dem Halbkreis einen Punkt $C$ einzeichnen, verbunden mit $A$ und $B$ wird sich immer ein rechtwinkliges Dreieck ergeben. $C$ darf aber nicht auf $A$ oder $B$ liegen.

  • Tipps

    Der Stufenwinkelsatz besagt:

    Wenn zwei parallele Geraden $x$ und $y$ von einer dritten Geraden $z$ geschnitten werden, so heißen die Winkel an den Parallelen, die die gleiche Lage haben, Stufenwinkel. Sie sind gleich groß.

    Schneidet eine Gerade $z$ zwei Parallelen $x$ und $y$, so heißen die Winkel, die an den Parallelen eine genau entgegengesetzte Lage haben, Wechselwinkel. Diese sind gleich groß.

    Der Kongruenzsatz WSW bezeichnet den Umstand, dass mehrere Dreiecke kongruent sind, wenn sie die gleiche Länge einer Seite und gleich große anliegende Winkel haben.

    Lösung
    1. Zuerst untersuchen wir, ob die gelben Flächen ein Kongruenzverhältnis haben.
    2. Der Winkel des unteren Dreiecks bei $A$ sowie der Winkel des oberen Dreiecks bei $M$ sind Stufenwinkel und damit gleich groß. Dasselbe gilt für den Winkel des unteren Dreiecks bei $M$ und den Winkel des oberen Dreiecks bei $C$.
    3. Und da $M$ die Strecke $\overline{AC}$ genau in der Mitte teilt, müssen $\overline{AM}$ und $\overline{CM}$ gleich lang sein. Nach dem Kongruenzsatz WSW ist damit die Kongruenz der beiden gelben Dreiecke bewiesen.
    4. Nun wird die rosa Fläche untersucht: Da die Strecken $\overline{MD}$ und $\overline{EB}$ sowie $\overline{ME}$ und $\overline{DB}$ parallel sind, ist das rosa Viereck $DBEM$ ein Parallelogramm.
    5. Das bedeutet, dass die beiden im Parallelogramm enthaltenen rosa Dreiecke kongruent sind, da diese Dreiecke eine gemeinsame Seite und gleiche Wechselwinkel an parallelen Geraden besitzen.
    6. Jetzt soll die Kongruenz von einem gelben und einem rosa Dreieck nachgewiesen werden. Hier kann man nach dem Wechselwinkelsatz schlussfolgern, dass die Dreiecke $ADM$ und $EBD$ kongruent sind.
    7. Daraus folgt, dass alle vier Dreiecke kongruent sind.
    8. Weil die gelbe Fläche aus zwei Dreiecken besteht und auch die rosa Fläche aus zwei Dreiecken besteht, sind die gelbe und die rosa Fläche gleich groß, q. e. d.
30 Tage kostenlos testen
Mit Spaß Noten verbessern
und vollen Zugriff erhalten auf

9.360

sofaheld-Level

6.600

vorgefertigte
Vokabeln

8.211

Lernvideos

38.688

Übungen

33.496

Arbeitsblätter

24h

Hilfe von Lehrkräften

laufender Yeti

Inhalte für alle Fächer und Klassenstufen.
Von Expert*innen erstellt und angepasst an die Lehrpläne der Bundesländer.

30 Tage kostenlos testen

Testphase jederzeit online beenden