Geometrische Beweise – Erklärung am Satz des Thales

in nur 12 Minuten? Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
-
5 Minuten verstehen
Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.
92%der Schüler*innen hilft sofatutor beim selbstständigen Lernen. -
5 Minuten üben
Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.
93%der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert. -
2 Minuten Fragen stellen
Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.
94%der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.
Geometrische Beweise – Erklärung am Satz des Thales Übung
-
Bestimme, welche Aussagen auf den geometrischen Beweis zutreffen.
TippsEine Theorie muss für alle Exemplare einer Figur wahr sein, nicht nur für ein Beispielexemplar.
Es sind lediglich ein Zirkel und ein Lineal ohne Längenangaben als Hilfsmittel erlaubt.
LösungFolgende Aussagen über den geometrischen Beweis treffen zu:
- Ein geometrischer Beweis beweist eine Behauptung mithilfe von Eigenschaften geometrischer Figuren und Logik.
- Manchmal muss man bei einem geometrischen Beweis auch ein wenig rechnen oder Verhältnisse bestimmen.
- Durch Symmetrie oder Ähnlichkeit konstruiert man etwas, das bei der Überprüfung der Behauptung weiterhilft.
- Je mehr Eigenschaften von geometrischen Figuren man kennt, desto leichter ist es, sie bei einem geometrischen Beweis zu nutzen.
Und folgende Aussagen treffen nicht zu:
- Bei einem geometrischen Beweis muss man unbedingt Längen, Flächen und Winkel messen.
- Bei einem geometrischen Beweis reicht es aus, die Behauptung an einem Beispiel zu testen, um sie als wahr zu bestätigen.
Es ist aber sehr wohl möglich, eine Behauptung durch ein Gegenbeispiel zu widerlegen. So könntest du die Behauptung „Alle Quadrate haben einen Flächeninhalt von $1\,\text{m}^2$.“ aufstellen. Doch dann muss dir nur ein einziges Quadrat gezeigt werden, das nicht diesen Flächeninhalt hat, und du weißt: Deine Behauptung ist falsch!
-
Schildere, wie man den Satz des Thales geometrisch beweist.
TippsEine Strecke wird immer nach ihrem Start- und Endpunkt benannt. Die Strecke zwischen den Punkten $X$ und $Y$ wäre also $\overline{XY}$ oder $\overline{YX}$.
LösungDie Behauptung, die zu beweisen ist, lautet: „Hat man einen Halbkreis mit dem Durchmesser $\overline{AB}$ und ergänzt irgendwo auf dem Halbkreis einen dritten Punkt $C$, so bilden die Strecken $\overline{AC}$ und $\overline{BC}$ einen rechten Winkel bei $C$, egal wo $C$ liegt, solange er nicht auf $A$ oder $B$ liegt.“
Man kann hier Symmetrie nutzen, um das zu überprüfen. Dazu wird zunächst der Kreis vervollständigt.Um den Kreis zu vervollständigen, benötigt man den Mittelpunkt $M$. Den findet man, indem man Kreisbogen um $A$ und $B$ zeichnet, die sich zweimal schneiden. Man verbindet diese Schnittpunkte und dort, wo die Gerade $\overline{AB}$ schneidet, liegt $M$.
Man legt den Zirkel am Mittelpunkt an und stellt als Radius entweder $\overline{AM}$ oder $\overline{BM}$ ein. So vervollständigt man den Kreis. Mithilfe einer Punktspiegelung von $C$ an $M$ kann man dann den gegenüberliegenden Punkt $D$ bestimmen und die Gerade $\overline{CD}$ zeichnen.
Verbindet man die vier Punkte, ergibt sich das Parallelogramm $ADBC$. Die Strecken $\overline{AC}$ und $\overline{DB}$ sowie $\overline{AD}$ und $\overline{CB}$ sind parallel zueinander. Außerdem sind die Diagonalen $\overline{AB}$ und $\overline{CD}$ gleich lang. Das bedeutet, dass $ADBC$ ein Rechteck ist.
Da man jetzt weiß, dass hier ein Rechteck vorliegt, bezieht man weitere Eigenschaften eines Rechtecks in den Beweis ein. Zum Beispiel hat ein Rechteck $4$ rechte Winkel. Damit muss dann auch der Winkel bei $C$ ein rechter Winkel sein und der Satz des Thales ist somit bewiesen. Man sagt: „{Q. e. d.}“. (Das steht für „Quod erat demonstrandum.“)
-
Entscheide, welche Eigenschaft zu welcher geometrischen Figur bzw. welchem Gesetz gehört.
TippsEin Viereck hat immer eine Innenwinkelsumme von $360^\circ$.
Eine Raute hat vier gleich lange Seiten.
LösungDie Summe der Innenwinkel beträgt immer $180^\circ$.
$\rightarrow$ DreieckEin Paar gegenüberliegender Winkel ist gleich groß. Eine Diagonale wird durch die andere halbiert.
$\rightarrow$ DrachenAlle Winkel sind rechtwinklig und alle Seiten gleich lang.
$\rightarrow$ QuadratMehrere Figuren sind deckungsgleich. Das heißt, sie stimmen in Form und Größe überein.
$\rightarrow$ KongruenzDiese Figur berührt jede Seite eines Vielecks von innen genau einmal.
$\rightarrow$ Inkreis -
Prüfe den Satz des Pythagoras mithilfe eines geometrischen Beweises.
TippsDie Hypothenuse ist die längste Seite eines Dreiecks.
Wenn zwei Figuren kongruent sind, bedeutet das anschaulich Folgendes: Du kannst sie mit der Schere ausschneiden und dann so übereinanderlegen, dass sie genau aufeinanderpassen, ohne dass eine Figur an den Seiten übersteht. Umgangssprachlich sind sie also „gleich groß“ bzw. einfach „gleich“.
LösungGegeben ist dieses rechtwinklige Dreieck mit den Katheten $a$ und $b$ sowie der Hypothenuse $c$.
Zunächst wird versucht, das Hypothenusenquadrat $c^2$ zu einem großen Quadrat zu ergänzen. Dazu werden $4$ Dreiecke verwendet, die kongruent sind zum Ausgangsdreieck. Man kann sehen, dass so ein neues, größeres Quadrat entsteht.
Nun nimmt man die beiden Kathetenquadrate $a^2$ und $b^2$ und versucht ebenfalls, diese zu einem großen Quadrat zu ergänzen. Dazu verwendet man auch $4$ Dreiecke, die kongruent zum Ausgangsdreieck sind. $a^2$ und $b^2$ lassen sich auf diese Weise ebenso zu einem neuen, größeren Quadrat ergänzen.
Was lässt sich daraus schließen?
In der ersten Figur ergänzt sich die orange Fläche mit der grünen Fläche zu einem Quadrat mit der Seitenlänge $a+b$. Und in der zweiten Figur ergibt die orange Fläche mit der roten und blauen Fläche dasselbe Quadrat mit der Seitenlänge $a+b$.
Da die orange Fläche in beiden Figuren gleich groß ist, bedeutet das: Die grüne Fläche muss genauso groß sein wie die rote und blaue Fläche zusammen.
Damit ist der Satz des Pythagoras bewiesen. Q. e. d. -
Gib wieder, was der Satz des Thales beschreibt.
TippsZuerst beschreibt man die Ausgangsbedingungen, danach das Vorgehen.
LösungDavon handelt der Satz des Thales:
Es ist ein Halbkreis gegeben. Den Durchmesser kann man zum Beispiel $\overline{AB}$ nennen. Man kann irgendwo auf dem Halbkreis einen Punkt $C$ einzeichnen, verbunden mit $A$ und $B$ wird sich immer ein rechtwinkliges Dreieck ergeben. $C$ darf aber nicht auf $A$ oder $B$ liegen.
-
Untersuche, ob die abgebildeten Flächen kongruent sind.
TippsDer Stufenwinkelsatz besagt:
Wenn zwei parallele Geraden $x$ und $y$ von einer dritten Geraden $z$ geschnitten werden, so heißen die Winkel an den Parallelen, die die gleiche Lage haben, Stufenwinkel. Sie sind gleich groß.
Schneidet eine Gerade $z$ zwei Parallelen $x$ und $y$, so heißen die Winkel, die an den Parallelen eine genau entgegengesetzte Lage haben, Wechselwinkel. Diese sind gleich groß.
Der Kongruenzsatz WSW bezeichnet den Umstand, dass mehrere Dreiecke kongruent sind, wenn sie die gleiche Länge einer Seite und gleich große anliegende Winkel haben.
Lösung- Zuerst untersuchen wir, ob die gelben Flächen ein Kongruenzverhältnis haben.
- Der Winkel des unteren Dreiecks bei $A$ sowie der Winkel des oberen Dreiecks bei $M$ sind Stufenwinkel und damit gleich groß. Dasselbe gilt für den Winkel des unteren Dreiecks bei $M$ und den Winkel des oberen Dreiecks bei $C$.
- Und da $M$ die Strecke $\overline{AC}$ genau in der Mitte teilt, müssen $\overline{AM}$ und $\overline{CM}$ gleich lang sein. Nach dem Kongruenzsatz WSW ist damit die Kongruenz der beiden gelben Dreiecke bewiesen.
- Nun wird die rosa Fläche untersucht: Da die Strecken $\overline{MD}$ und $\overline{EB}$ sowie $\overline{ME}$ und $\overline{DB}$ parallel sind, ist das rosa Viereck $DBEM$ ein Parallelogramm.
- Das bedeutet, dass die beiden im Parallelogramm enthaltenen rosa Dreiecke kongruent sind, da diese Dreiecke eine gemeinsame Seite und gleiche Wechselwinkel an parallelen Geraden besitzen.
- Jetzt soll die Kongruenz von einem gelben und einem rosa Dreieck nachgewiesen werden. Hier kann man nach dem Wechselwinkelsatz schlussfolgern, dass die Dreiecke $ADM$ und $EBD$ kongruent sind.
- Daraus folgt, dass alle vier Dreiecke kongruent sind.
- Weil die gelbe Fläche aus zwei Dreiecken besteht und auch die rosa Fläche aus zwei Dreiecken besteht, sind die gelbe und die rosa Fläche gleich groß, q. e. d.
9.360
sofaheld-Level
6.600
vorgefertigte
Vokabeln
8.211
Lernvideos
38.688
Übungen
33.496
Arbeitsblätter
24h
Hilfe von Lehrkräften

Inhalte für alle Fächer und Klassenstufen.
Von Expert*innen erstellt und angepasst an die Lehrpläne der Bundesländer.
Testphase jederzeit online beenden
Beliebteste Themen in Mathematik
- Römische Zahlen
- Prozentrechnung
- Prozentrechnung - Übungen
- Primzahlen
- Geometrische Lagebezeichnungen
- Was ist eine Ecke?
- Rechteck
- Was ist eine Gleichung?
- Pq-Formel
- Binomische Formeln
- Trapez
- Flächeninhalt – Übungen
- Volumen Zylinder
- Potenzgesetze – Übungen
- Umfang Kreis
- Zehnerzahlen vergleichen und ordnen – Übungen
- Quadrat
- Zahlen sortieren – Übungen
- Division
- Binomische Formeln – Übungen
- Raute
- Brüche umwandeln Übungen
- Parallelogramm
- Ungleichungen – Übungen
- Polynomdivision
- Zahlen bis 1000 ordnen – Übungen
- Was Ist Eine Viertelstunde
- Terme mit Variablen aufstellen – Übungen
- Prisma
- Die Grundrechenarten – Übungen
- Mitternachtsformel
- Äquivalenzumformung
- Grundrechenarten Begriffe
- Größer Kleiner Zeichen
- Dreiecksarten
- Punkt-vor-Strich und Klammern-zuerst-Regel
- Aufbau von Dreiecken
- Quader
- Zahlen runden – Übungen
- Satz Des Pythagoras
- Ziffern und Stellenwerte – Übungen
- Dreieck Grundschule
- Koordinatensystem – Übungen
- Erste Binomische Formel
- Kreis
- Trigonometrie
- Trigonometrische Funktionen
- Standardabweichung
- Quadratische Gleichungen – Übungen
- Flächeninhalt