Über 1,6 Millionen Schüler*innen nutzen sofatutor!
  • 93%

    haben mit sofatutor ihre Noten in mindestens einem Fach verbessert

  • 94%

    verstehen den Schulstoff mit sofatutor besser

  • 92%

    können sich mit sofatutor besser auf Schularbeiten vorbereiten

Das magische Quadrat

Magische Quadrate - faszinierend und knifflig zugleich! Lerne, wie man sie identifiziert und löst. Packe deine Neugierde ein und begib dich auf die Reise, fehlende Zahlen zu finden und die Rolle der Zaubersumme zu verstehen. Interessiert? Lass uns gemeinsam den Zauber lüften!

Du willst ganz einfach ein neues Thema lernen
in nur 12 Minuten?
Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
  • Das Mädchen lernt 5 Minuten mit dem Computer 5 Minuten verstehen

    Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.

    92%
    der Schüler*innen hilft sofatutor beim selbstständigen Lernen.
  • Das Mädchen übt 5 Minuten auf dem Tablet 5 Minuten üben

    Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.

    93%
    der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert.
  • Das Mädchen stellt fragen und nutzt dafür ein Tablet 2 Minuten Fragen stellen

    Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.

    94%
    der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.
Bewertung

Ø 4.0 / 98 Bewertungen
Die Autor*innen
Avatar
Team Digital
Das magische Quadrat
lernst du in der 5. Klasse - 6. Klasse

Das magische Quadrat Übung

Du möchtest dein gelerntes Wissen anwenden? Mit den Aufgaben zum Video Das magische Quadrat kannst du es wiederholen und üben.
  • Berechne die fehlenden Zahlen des magischen Quadrats.

    Tipps

    Um die Zaubersumme herauszufinden, betrachtest du eine Zeile, Spalte oder Diagonale, die vollständig ausgefüllt ist. Dann addierst du alle Einträge zur Zaubersumme.

    Um die fehlende Zahl einer Zeile, Spalte oder Diagonale zu bestimmen, kannst du die beiden gegebenen Zahlen von der Zaubersumme abziehen.

    Lösung

    So sieht das fertige magische Quadrat aus. Du kannst es folgendermaßen berechnen:

    „Die Zaubersumme dieses magischen Quadrats berechnet er, indem er die untere Zeile addiert:

    $13+6+11=30$

    Die Zaubersumme beträgt also $30$.“

    • Um die Zaubersumme herauszufinden, betrachtest du eine Zeile, Spalte oder Diagonale, die vollständig ausgefüllt ist. Dann addierst du alle Einträge zur Zaubersumme.
    „Anschließend berechnet er den Eintrag in der Mitte der obersten Zeile.

    Dafür rechnet er: $30-(10+6) =14$“

    • Um diesen Eintrag zu berechnen, hat er sich die mittlere Spalte angeschaut, bei der bereits die Werte $10$ und $6$ gegeben waren.
    „Den Eintrag in der obersten Zeile ganz rechts können wir nun entweder anhand der Diagonalen bestimmen:

    $30-(13+10)=7$

    oder wir nutzen die oberste Zeile, in der schon zwei Summanden vorhanden sind:

    $30-(9+14)=7$

    Da bei beiden Rechnungen dieselbe Zahl rauskommen muss, ist das ein guter Test, ob du richtig gerechnet hast.“

    • Um die letzte Zahl einer Zeile, Spalte oder Diagonale zu bestimmen, kannst du die beiden gegebenen Zahlen von der Zaubersumme abziehen.
    „Anschließend berechnen wir den Eintrag in der Mitte links:

    $30-(13+9)=8$

    Und den Eintrag in der Mitte rechts:

    $30-(11+7)=12$“

    • Um ein magisches Quadrat zu lösen, betrachtest du nacheinander alle Zeilen, Spalten und Diagonalen, bei denen nur eine Zahl schon vorhanden ist und bestimmst die fehlenden Zahlen.
  • Ergänze das magische Quadrat.

    Tipps

    Du kannst das magische Quadrat vervollständigen, indem du zuerst die Zaubersumme und anschließend nacheinander die einzelnen Einträge bestimmst.

    Für den Eintrag links unten rechnest du:

    • $34-(16+1+7)=$
    Lösung

    Du kannst das magische Quadrat vervollständigen, indem du zuerst die Zaubersumme und anschließend nacheinander die einzelnen Einträge bestimmst. Die Zaubersumme kannst du anhand der obersten Zeile bestimmen:

    • $16+6+9+3=34$
    Anschließend kannst du den Eintrag links unten bestimmen:

    • $34-(16+1+7)=10$
    Für den fehlenden Eintrag in der zweiten Spalte erhältst du:

    • $34-(11+6+4)=13$
    Der obere Eintrag in der rechten Spalte lautet:

    • $34-(11+1+8)=14$
    Und für den Eintrag in der rechten Spalte und dritten Zeile gilt:

    • $34-(13+2+7)=12$
  • Ermittle den fehlenden Eintrag des magischen Quadrats.

    Tipps

    Um die Zaubersumme zu bestimmen, musst du eine Zeile, Spalte oder Diagonale finden, die komplett ausgefüllt ist. Anschließend summierst du alle Einträge dieser Zeile, Spalte oder Diagonalen.

    Lösung

    Um den fehlenden Eintrag zu finden, musst du zunächst die Zaubersumme bestimmen. Dazu musst du eine Zeile, Spalte oder Diagonale finden, die komplett ausgefüllt ist. Anschließend summierst du alle Einträge dieser Zeile, Spalte oder Diagonalen.

    Danach ziehst du die drei Einträge einer Zeile, Spalte oder Diagonalen, in der dein gesuchter Eintrag vorkommt, von der Zaubersumme ab. So erhältst du:

    • Das Quadrat ganz links hat eine Zaubersumme von $23$. Der grüne Eintrag beträgt: $23-(11+5+4)=3$
    • Das nächste magische Quadrat hat eine Zaubersumme von $21$. Der grüne Eintrag beträgt: $21-(10+2+1)=8$
    • Die dritte Zaubersumme beträgt: $44$. Der grüne Eintrag beträgt: $44-(14+4+2)=24$
    • Das Quadrat ganz rechts hat eine Zaubersumme von $64$. Der grüne Eintrag beträgt: $64-(21+10+6)=27$
  • Ermittle die fehlenden Einträge des magischen Quadrats.

    Tipps

    Um das magische Quadrat zu vervollständigen, musst du zuerst die Zaubersumme bestimmen. Dazu addierst du alle Einträge der ersten Zeile.

    Um einen fehlenden Eintrag in einer Zeile zu berechnen, subtrahierst du von der Zaubersumme (hier: $9+10+11=30$) die anderen beiden Einträge der Zeile, Spalte oder Diagonalen.

    Für den Eintrag in der ersten Zeile ganz rechts rechnest du also:

    $30-(9+14)=7$

    Lösung

    Um das kleine magische Quadrat zu vervollständigen, musst du zuerst die Zaubersumme bestimmen. Dazu addierst du alle Einträge der ersten Zeile. Hier erhältst du:

    $8+1+6=15$

    Die Zaubersumme beträgt also $15$. Damit kannst du alle anderen Einträge bestimmen. Wir beginnen bei dem Eintrag links unten. Hier erhalten wir:

    $15-(8+3)=4$

    Damit erhalten wir für den mittleren Eintrag:

    $15-(4+6)=5$

    Und für rechts unten:

    $15-(8+5)=2$

    Der letzte Eintrag beträgt damit:

    $15-(2+6)=7$

    Auch um das große magische Quadrat zu vervollständigen, musst du zuerst die Zaubersumme bestimmen. Dazu addierst du alle Einträge der ersten Zeile. Hier erhältst du:

    $1+1+12+7=21$

    Damit bestimmen wir die restlichen Einträge. Dazu finden wir eine Zeile, Spalte oder Diagonale in der alle Einträge bis auf einer ausgefüllt sind. Dann addieren wir alle vorhandenen Einträge und ziehen sie von der Zaubersumme ab. Hier ist das zum Beispiel die zweite Spalte von links. Wir erhalten:

    $21-(10+2+1)=8$

    Für den Eintrag in der ersten Spalte erhalten wir:

    $21-(11+4+1)=5$

    Für den Eintrag in der dritten Spalte und zweiten Zeile ergibt sich:

    $21-(10+4+7)=0$

    Für den anderen Eintrag in dieser Spalte erhalten wir:

    $21-(12+6+0)=3$

    Für die Einträge der letzten Spalte erhalten wir:

    $21-(11+8+0)=2$

    $21-(10+5+3)=3$

    $21-(4+2+6)=8$

  • Bestimme die korrekten Aussagen zu magischen Quadraten.

    Tipps

    Kennst du das Ergebnis der Addition dreier Zahlen (z. B. $19$) und kennst außerdem zwei ihrer Summanden (z. B. $11$ und $2$), dann kannst du die letzte Zahl so bestimmen: $19-(11+2)=19-13=6$

    Bei diesem magischen Quadrat ist die Zaubersumme $15$.

    Bei diesem Quadrat würdest du zunächst die linke und mittlere Spalte ausfüllen. Für die linke Spalte rechnet man:

    $30-(9+13)=8$

    Lösung

    Diese Aussagen sind falsch:

    „Bei einem magischen Quadrat sind die Summen der Zahlen in jeder Zeile, Spalte und Diagonalen jeweils unterschiedlich.“

    • Bei einem magischen Quadrat sind die Summen der Zahlen in jeder Zeile, Spalte und Diagonalen genau gleich. Dies ist die Definition des magischen Quadrats.
    „Um ein magisches Quadrat zu lösen, betrachtest du nacheinander alle Zeilen, Spalten und Diagonalen, bei denen nur eine Zahl schon vorhanden ist und bestimmst die fehlenden Zahlen.“

    • Du betrachtest Zeilen, Spalten und Diagonalen, bei denen zwei Zahlen schon ausgefüllt sind. Kennst du die Zaubersumme, kannst du damit die fehlende Zahl bestimmen.
    Diese Aussagen sind richtig:

    „Die Summe der Zahlen in jeder Zeile, Spalte und Diagonalen heißt auch Zaubersumme.“

    „Um die Zaubersumme herauszufinden, betrachtest du eine Zeile, Spalte oder Diagonale, die vollständig ausgefüllt ist. “

    • Da die Zaubersumme die Summe der einzelnen Zeilen, Spalten und Diagonalen ist, kannst du anhand einer vollständig ausgefüllten Zeile, Spalte oder Diagonale die Zaubersumme bestimmen.
    „Um die letzte Zahl einer Zeile, Spalte oder Diagonale zu bestimmen, kannst du alle gegebenen Zahlen von der Zaubersumme abziehen.“

  • Leite die fehlenden Einträge des magischen Quadrats ab.

    Tipps

    Hast du die Zaubersumme gefunden, kannst du die restlichen Einträge bestimmen. Dazu findest du eine Zeile, Spalte oder Diagonale, in der alle Einträge bis auf einer ausgefüllt sind. Dann addierst du alle vorhandenen Einträge und ziehst sie von der Zaubersumme ab.

    Auch wenn hier negative Zahlen vorkommen, kannst du wie gewohnt vorgehen. Wenn zwei unterschiedliche Vorzeichen hintereinander vorkommen, bleibt ein Minus. Zum Beispiel gilt:

    $3+(-4)=3-4=-1$

    Lösung

    Um das magische Quadrat zu vervollständigen, musst du zuerst die Zaubersumme bestimmen. Dazu addierst du alle Einträge der letzten Zeile.

    Auch wenn hier negative Zahlen vorkommen, kannst du wie gewohnt vorgehen. Wenn zwei unterschiedliche Vorzeichen hintereinander vorkommen, bleibt ein Minus. Zum Beispiel gilt:

    $3+(-4)=3-4=-1$

    Mit diesem Wissen erhältst du für die Zaubersumme:

    $4-1+6+9=18$

    Damit bestimmen wir die restlichen Einträge. Dazu finden wir eine Zeile, Spalte oder Diagonale, in der alle Einträge bis auf einer ausgefüllt sind. Dann addieren wir alle vorhandenen Einträge und ziehen sie von der Zaubersumme ab. Hier ist das zum Beispiel die Diagonale von links oben nach rechts unten. Wir erhalten:

    $18-(9+3-2)=18-10=8$

    Für den Eintrag in der ersten Spalte erhalten wir:

    $18-(7+1-2)=18-6=12$

    Für den Eintrag in der ersten Spalte und dritten Zeile ergibt sich:

    $18-(11+4-2)=5$

    Für den anderen Eintrag in dieser Zeile erhalten wir:

    $18-(10+3+5)=0$

    Für die anderen Einträge der zweiten Spalte erhalten wir:

    $18-(12+6+3)=-3$

    $18-(7+9+0)=2$