30 Tage kostenlos testen:
Mehr Spaß am Lernen.

Überzeugen Sie sich von der Qualität unserer Inhalte.

Binomische Formeln: Faktorisieren 05:59 min

Textversion des Videos

Transkript Binomische Formeln: Faktorisieren

In der Faktorisierungs-Factory werden unübersichtliche Terme in handliche Portionen aus einzelnen Faktoren umgewandelt. Doch die Technik ist empfindlich! Längst nicht jeder Term kann dort vollständig umgewandelt werden. Denn hier werden Terme NUR unter Verwendung der binomischen Formeln faktorisiert. In diesem Video wenden wir die drei binomischen Formeln rückwärts an, um mit ihrer Hilfe Terme zu faktorisieren. Wir schauen, welche Bedingungen Terme dafür aufweisen müssen. Außerdem sehen wir uns Beispiele für jede der binomischen Formeln an. Wir beginnen mit der dritten binomischen Formel. Um einen Term mit ihrer Hilfe zu faktorisieren, muss es sich bei ihm um eine Differenz handeln. Zur Faktorisierung ermitteln wir die Beträge der Zahlen, die quadriert den Minuenden und den Subtrahenden der Differenz ergeben. So kann man jede Differenz faktorisieren. Der faktorisierte Term besteht dann aus dem Produkt aus Summe und Differenz der ermittelten Beträge. Schauen wir uns dazu ein Beispiel an: 81 und 144 sind Quadratzahlen. Quadrieren wir 9x, erhalten wir 81 x Quadrat. 9x ist also einer der gesuchten Beträge. Quadrieren wir 12, kommen wir auf 144. Der andere Betrag ist also 12. Der faktorisierte Term lautet also: 'in Klammern' '9x PLUS 12' mal 'in Klammern' '9x minus 12'. Machen wir mit der zweiten binomischen Formel weiter. Hier muss der Term folgende Bedingungen erfüllen: erstens muss er aus drei Gliedern bestehen. zwei davon bilden die Summe zweier Quadratzahlen. Davon ziehen wir das verdoppelte Produkt zweier Beträge ab, deren Quadrat die jeweils anderen Glieder sind. Die zweite Bedingung ist also, dass der Term über einen Subtrahenden verfügt, der die beiden anderen Glieder in der richtigen Weise kombiniert. Daher können wir mit der zweiten binomischen Formel nur spezielle Terme vollständig faktorisieren. Der faktorisierte Term besteht dann aus der Differenz der ermittelten Beträge zum Quadrat. Sehen wir uns auch hier ein Beispiel an: Dieser Term verfügt über drei Glieder. Das stimmt also schon mal. Der Subtrahend ist hier 'minus 7,5y'. Mal sehen, ob wir ihn mit Hilfe der anderen beiden Glieder darstellen können. Quadrieren wir 1,5, erhalten wir 2,25. Quadrieren wir 2,5 y, kommen wir auf 6,25 y Quadrat. Die gesuchten Beträge sind also 1,5 und 2,5 y. Multiplizieren und verdoppeln wir sie, kommen wir auf 7,5 y, also genau den Subtrahenden. Damit ist auch die zweite Bedingung erfüllt. Wir können den Term daher vollständig faktorisieren. Als Ergebnis erhalten wir die Differenz der ermittelten Beträge, also '1,5 minus 2,5y' zum Quadrat. Dann können wir uns jetzt der ersten binomischen Formel zuwenden: Sie unterscheidet sich von der zweiten binomischen Formel nur dadurch, dass wir hier Pluszeichen statt Minuszeichen haben. Wir können daher die Bedingungen für das Faktorisieren mit Hilfe der zweiten binomischen Formel fast 1 zu 1 übernehmen. Auch hier benötigen wir drei Glieder. Eines davon besteht aus dem verdoppelten Produkt zweier Beträge, deren Quadrate gerade die anderen beiden Glieder ergeben. Auch für die erste binomische Formel gilt also, dass wir mit ihrer Hilfe nur spezielle Terme vollständig faktorisieren können. Bei der zweiten binomischen Formel erkennen wir das kombinierte Glied sofort, weil es durch das Minus ausgezeichnet ist. Bei der ersten binomischen Formel trifft das nicht zu. Wir müssen also etwas genauer hinschauen. Als faktorisierten Term erhalten wir die Summe der beiden Beträge, die wir so herausgefunden haben und die zum Quadrat. Schauen wir uns auch hier ein Beispiel an. Offensichtlich haben wir auch hier drei Glieder. Diese Bedingung ist also erfüllt. 16 und 36 sind Quadratzahlen. 48 aber nicht, daher ist das dritte Glied ein guter Kandidat für die Kombination der beiden anderen. Überprüfen wir das! Quadrieren wir 4x, erhalten wir 16 x Quadrat. Quadrieren wir 6, kommen wir auf 36. Multiplizieren und verdoppeln wir sie, kommen wir auf 48x, also auf das dritte Glied. Deshalb ist auch die zweite Bedingung erfüllt. Als faktorisierten Term erhalten wir die Summe der beiden Beträge, also '4x plus 6' zum Quadrat. Fassen wir das noch einmal zusammen: Um einen Term mit Hilfe der ersten binomischen Formel zu faktorisieren, muss er zwei Eigenschaften aufweisen: erstens muss er über mindestens drei Glieder verfügen. Zweitens muss eines davon eine spezielle Kombination der beiden anderen darstellen. Weil hier alle Glieder Summanden sind, musst Du sie einzeln überprüfen, um das kombinierte zu finden. Bei der zweiten binomischen Formel ist das fast genauso. Wieder braucht man drei Glieder, von denen eines eine spezielle Kombination der beiden anderen darstellt. Diese Kombination ist aber leicht herauszufinden, denn sie weist als einziges Glied ein Minus auf. Die dritte binomische Formel kannst du zur Faktorisierung jeder Differenz nutzen. Hier gibt es kein kombiniertes Glied. Doch macht man das mit falschen Termen, wird die Maschine heftig lärmen!

2 Kommentare
  1. Super

    Von Tim W., vor 9 Tagen
  2. naja...

    Von Tp3lxs, vor etwa einem Monat