Beziehungen und Verknüpfungen von Ereignissen
Beziehungen und Verknüpfungen von Ereignissen
Beschreibung Beziehungen und Verknüpfungen von Ereignissen
Nach dem Schauen dieses Videos wirst du in der Lage sein, die Beziehungen und Verknüpfungen von Ereignissen zu bestimmen.
Zunächst lernst du, was es bedeutet, wenn Ereignisse kausal äquivalent oder unabhängig sind, ein Ereignis ein anderes kausal bedingt sowie Ereignisse sich kausal ausschließen. Anschließend bestimmen wir gemeinsam die Beziehungen und Verknüpfungen unterschiedlicher Ereignisse. Abschließend lernst du die mathematischen Ausdrücke für die gelernten Beziehungen und Verknüpfungen von Ereignissen.
Lerne etwas über die Beziehungen und Verknüpfungen von Ereignissen, indem du den König beim Entlarven eines Geschichtenerzählers unterstützt.
Das Video beinhaltet Schlüsselbegriffe, Bezeichnungen und Fachbegriffe wie Beziehungen und Verknüpfungen von Ereignissen, kausal äquivalente Ereignisse, kausal unabhängige Ereignisse, ein Ereignis bedingt ein anderes kausal, Ereignisse schließen sich kausal aus.
Bevor du dieses Video schaust, solltest du bereits wissen, was Ereignisse sind.
Nach diesem Video wirst du darauf vorbereitet sein, die Einführung in die Wahrscheinlichkeit zu behandeln.
Transkript Beziehungen und Verknüpfungen von Ereignissen
Audienz am Hofe König Karls des Vierten. Der stadtbekannte Aufschneider Hieronymus versucht, die Gunst des Königs zu gewinnen. Doch niemand entlarvt Geschichtenerzähler so scharfsinnig wie König Karl. Er ist nämlich Experte darin, Beziehungen und Verknüpfungen von Ereignissen zu erkennen. Hieronymus spricht zum König: "Weil du die Krone besitzt, bist du der König — und weil du der König bist, besitzt du die Krone." König Karl der Vierte denkt nach. Kann man König sein, ohne die Krone zu besitzen? Nein — bei der Krönung bekommt man die Krone und behält sie, solange man König ist. Aber kann man die Krone besitzen, ohne König zu sein? Auch das nicht — denn der Besitzer der Krone ist automatisch der König, so will es das Gesetz. Die beiden Ereignisse "König sein" und "die Krone besitzen" bedingen sich also gegenseitig. Man sagt auch: sie sind kausal äquivalent. König Karl der Vierte hat also keinen Grund, an Hieronymus zu zweifeln. Hieronymus lässt den König wissen: "Nur meiner Audienz wegen blickte die Prinzessin heute Morgen aus ihrem Turmfenster herab!" Da stutzt König Karl der Vierte. Er weiß genau, dass die Prinzessin jeden Morgen den Sonnenaufgang aus ihrem Fenster betrachtet. Die Prinzessin kann aus dem Fenster blicken, ohne dass Hieronymus seine Audienz hat. Und Hieronymus kann seine Audienz haben, ohne dass die Prinzessin aus dem Fenster blickt. Außerdem können beide Ereignisse gleichzeitig eintreten, und es können auch beide nicht eintreten. Also schließen sie sich gegenseitig nicht aus, aber bedingen sich auch nicht. Die Ereignisse "Hieronymus kommt zur Audienz" und "die Prinzessin blickt aus dem Fenster" sind also kausal unabhängig. König Karl beginnt, an Hieronymus zu zweifeln. Doch der redet unbeirrt weiter. "In einem einsamen Stein fand ich ein sagenumwobenes Schwert. Ich allein konnte es aus dem Stein befreien und nun ist es mein." Obwohl König Karl schon oft davon gehört hat, dass Schwerter aus Steinen gezogen wurden, ist er skeptisch. Denn aus der Tatsache, dass Hieronymus ein Schwert besitzt, folgt noch lange nicht, dass er es aus einem Stein zog. Schließlich hätte er es ebenso bei einem Schwerthändler kaufen können. Das Ereignis "Schwert besitzen" bedingt also nicht das Ereignis "Schwert aus dem Stein befreien" aber umgekehrt bedingt das Ereignis "Schwert aus dem Stein befreien" das Ereignis "Schwert besitzen" kausal. Man sagt, die beiden Ereignisse sind kausal abhängig. König Karl kann es nicht fassen, dass Hieronymus ihm mit diesen Prahlereien die Zeit stiehlt. Doch Hieronymus lässt nicht locker: "Mit meinem Schwert habe ich schließlich den Drachen besiegt, der deine Ländereien unsicher machte!" Das kann König Karl nun gar nicht mehr glauben. Er weiß genau, dass der Drache immer noch sein Unwesen treibt. Kann Hieronymus den Drachen besiegt haben während der noch die Ländereien unsicher macht? Nein, das geht sicherlich nicht — die beiden Ereignisse schließen sich gegenseitig aus! Die Gunst des Königs hat Hieronymus mit seinen Lügengeschichten nicht gewonnen. Solange König Karl darüber nachdenkt, was mit Hieronymus geschehen soll, fassen wir rasch zusammen, was wir gelernt haben. Zwei Ereignisse A und B können auf verschiedene Arten kausal zusammenhängen. Sie könnten sich gegenseitig bedingen — dann sagt man, sie sind kausal äquivalent. Wenn sie sich nicht ausschließen, aber sich auch nicht bedingen, sagt man, dass sie kausal unabhängig voneinander sind. Falls immer, wenn Ereignis A eintritt, auch Ereignis B eintritt — aber nicht zwangsläufig umgekehrt, sagt man, dass Ereignis A Ereignis B kausal bedingt. Wenn zwar eines der beiden Ereignisse eintreten kann, das andere dann aber auf keinen Fall mehr eintritt, schließen sich die beiden Ereignisse kausal aus. Aber Achtung: der Begriff Unabhängigkeit von Ereignissen taucht auch in einem anderen Zusammenhang auf. Nämlich bei der Berechnung von Wahrscheinlichkeiten. Man nennt das stochastische Unabhängigkeit. Das ist aber ein ganz anderes Konzept von Unabhängigkeit. König Karl der Vierte hat sich eine Meinung von Hieronymus gebildet. Wer sich mit solchen Geschichten zum Narren macht, hat eine genau treffende Aufgabe: Und damit wird Hieronymus der neue Hofnarr von König Karl dem Vierten.
Beziehungen und Verknüpfungen von Ereignissen Übung
-
Gib die mathematischen Schreibweisen für die jeweiligen Beziehungen zwischen den Ereignissen $A$ und $B$ an.
TippsZwei Ereignisse sind dann kausal äquivalent, wenn sie sich gegenseitig bedingen.
$A\Rightarrow B$ bedeutet:
Immer, wenn Ereignis $A$ eintritt, tritt auch Ereignis $B$ ein — aber nicht zwangsläufig umgekehrt.
LösungWenn du die Beziehungen und Verknüpfungen von Ereignissen untersuchen möchtest, so ist es von Vorteil, die passenden mathematischen Ausdrücke zu kennen. Zwei Ereignisse $A$ und $B$ können auf verschiedene Arten kausal zusammenhängen.
- Sie könnten sich gegenseitig bedingen. Dann sind sie kausal äquivalent.
- Sie könnten sich gegenseitig nicht ausschließen, aber auch nicht bedingen. Dann sind sie kausal unabhängig.
- Ereignis $B$ könnte eintreten, sofern Ereignis $A$ eintritt — aber nicht zwangsläufig umgekehrt. Dann bedingt Ereignis $A$ das Ereignis $B$ kausal.
- Ereignis $B$ könnte eintreten, sofern Ereignis $A$ nicht eintritt, und umgekehrt. Dann schließen sich die Ereignisse $A$ und $B$ kausal aus.
$A\Leftrightarrow B$: $\quad A$ und $B$ sind kausal äquivalent.
$A\nLeftarrow B$: $\quad A$ ist kausal unabhängig von $B$.
$A\Rightarrow B$: $\quad A$ bedingt $B$ kausal.
$A\otimes B$: $\quad A$ und $B$ schließen sich kausal aus.
-
Bestimme die Beziehungen der gegebenen Ereignisse.
TippsZwei Ereignisse $A$ und $B$, die sich gegenseitig nicht ausschließen, aber auch nicht bedingen, sind kausal unabhängig. Dann gilt sowohl $A\nRightarrow B$ als auch $A\nLeftarrow B$.
Wenn Ereignis $B$ nur dann eintreten kann, wenn Ereignis $A$ eintritt, so sagt man, dass Ereignis $A$ Ereignis $B$ kausal bedingt — aber das gilt umgekehrt nicht zwangsläufig. Wir schreiben dann $A\Rightarrow B$.
Dem König ist Folgendes bekannt:
- Jeden Morgen betrachtet die Prinzessin aus ihrem Fenster den Sonnenaufgang. Die Prinzessin kann also aus dem Fenster blicken, ohne dass Hieronymus seine Audienz hat.
- Zudem kann Hieronymus seine Audienz haben, ohne dass die Prinzessin aus dem Fenster blickt.
- ABER beide Ereignisse könnten auch gleichzeitig eintreten.
LösungBevor wir die gegebenen Beispiele betrachten, fassen wir zunächst zusammen, welche Beziehungen zwischen zwei Ereignissen vorliegen können. Im Folgenden sind diese mit den dazugehörigen mathematischen Schreibweisen aufgeführt.
- $A\Leftrightarrow B$: $\quad A$ und $B$ sind kausal äquivalent.
- $A\nLeftarrow B$: $\quad A$ ist kausal unabhängig von $B$.
- $A\Rightarrow B$: $\quad A$ bedingt $B$ kausal.
- $A\otimes B$: $\quad A$ und $B$ schließen sich kausal aus.
Beispiel 1
Gegeben sind die Ereignisse:
- $A$: König sein
- $B$: die Königskrone besitzen
Die beiden Ereignisse $A$ und $B$ bedingen sich also gegenseitig. Sind zwei Ereignisse kausal äquivalent, so schreiben wir:
- $A\Leftrightarrow B$.
Gegeben sind die Ereignisse:
- $A$: Schwert besitzen
- $B$: Schwert aus einem Stein ziehen
Das Ereignis $B$ bedingt also das Ereignis $A$ – aber das gilt umgekehrt nicht zwangsläufig. Wir schreiben dann:
- $A\Leftarrow B$ und
- $A\nRightarrow B$.
Gegeben sind die Ereignisse:
- $A$: Hieronymus kommt zur Audienz.
- $B$: Die Prinzessin blickt aus dem Fenster.
Somit sind die Ereignisse $A$ und $B$ kausal unabhängig voneinander und wir schreiben:
- $A\nLeftarrow B$ und
- $A\nRightarrow B$.
Gegeben sind die Ereignisse:
- $A$: Hieronymus hat den Drachen besiegt.
- $B$: Der Drache treibt immer noch sein Unwesen.
Die Ereignisse $A$ und $B$ schließen sich gegenseitig kausal aus und wir schreiben:
- $A\otimes B$.
-
Erkläre die Bedeutung der Beziehung zwischen den Ereignissen $A$ und $B$.
TippsDie Ereignisse $A$ und $B$ sind kausal unabhängig voneinander.
Man schreibt $A\nRightarrow B$ und $A\nLeftarrow B$.
Eine Person kann männlich sein, ohne Gitarre zu spielen. Auch muss eine Person, die Gitarre spielt, nicht zwingend männlich sein.
LösungIm Folgenden betrachten wir die zwei Ereignisse
- $A$: Eine Person ist männlich und
- $B$: Eine Person spielt Gitarre,
- Eine Person kann männlich sein, ohne Gitarre zu spielen.
- Auch muss eine Person, die Gitarre spielt, nicht zwingend männlich sein.
- Aber es ist natürlich möglich, dass eine männliche Person Gitarre spielt.
- Auch kann es sein, dass eine Person weder männlich ist, noch Gitarre spielt.
- Durch das Eintreten von Ereignis $A$ wird das Eintreten von Ereignis $B$ weder bedingt noch ausgeschlossen.
- Ebenso wird durch das Eintreten von Ereignis $B$ das Eintreten von Ereignis $A$ weder bedingt noch ausgeschlossen.
- Daher könnte es sein, dass die Ereignisse $A$ und $B$ gleichzeitig eintreten.
- Es könnte aber auch weder Ereignis $A$ noch Ereignis $B$ eintreten.
- $A\nRightarrow B$ und
- $A\nLeftarrow B$.
-
Ermittle die Beziehungen und Verknüpfungen zwischen den gegebenen Ereignissen.
Tipps$A\otimes B$ bedeutet, dass Ereignis $A$ und Ereignis $B$ sich kausal ausschließen.
Bedingen sich die Ereignisse gegenseitig, so sind diese kausal äquivalent. Wir schreiben dann $A\Leftrightarrow B$.
Tritt Ereignis $B$ ein, sofern Ereignis $A$ eintritt — aber nicht zwangsläufig umgekehrt – so bedingt Ereignis $A$ das Ereignis $B$ kausal. Es gilt:
$A\Rightarrow B$ und
$A\nLeftarrow B$.LösungIn dieser Aufgabe betrachten wir die folgenden Ereignisse:
$A$: An der Fahrradführerschein-Prüfung teilgenommen
$B$: Fahrradführerschein-Prüfung bestanden$C$: Fußballteam spielt im Viertelfinale
$D$: Fußballteam hat im Achtelfinale gewonnenDiese untersuchen wir nun bezüglich ihrer Beziehungen und Verknüpfungen zueinander.
Fahrradführerschein-Prüfung
Nimmt man an einer Fahrradführerschein-Prüfung teil, so heißt es noch lange nicht, dass man diese auch besteht. Ereignis $A$ ist also kausal unabhängig von Ereignis $B$. Wir schreiben dann $A\nRightarrow B$.
Hat man die Fahrradführerschein-Prüfung jedoch bestanden, so muss man an dieser teilgenommen haben, sodass $B\Rightarrow A$ gilt. Das heißt, dass das Ereignis $B$ das Ereignis $A$ kausal bedingt.
Fußballteam
Ein Fußballteam, das im Achtelfinale gewonnen hat, kommt ins Viertelfinale. Das bedeutet, dass ein Fußballteam, das im Viertelfinale spielt, im Achtelfinale gewonnen haben muss. Diese Ereignisse sind also kausal äquivalent und wir schreiben $A\Leftrightarrow B$.
-
Beschreibe die gegebenen Beziehungen und Verknüpfungen zwischen Ereignissen.
TippsDie folgenden beiden Ereignisse schließen sich gegenseitig aus:
- $A$: Felix war heute um 14:00 Uhr im Kino und
- $B$: Felix war heute um 14:00 Uhr in der Schule.
Ereignis $C$ und $D$ sind kausal unabhängig:
- $C$: Felix war heute um 14:00 Uhr in der Schule und
- $D$: Felix hat heute um 14:00 Uhr geschlafen.
LösungEs sind folgende Beziehungen und Verknüpfungen zwischen Ereignissen möglich:
- Sie könnten sich gegenseitig bedingen. Dann sind sie kausal äquivalent.
- Sie könnten sich gegenseitig nicht ausschließen, aber auch nicht bedingen. Dann sind sie kausal unabhängig.
- Ereignis $B$ könnte eintreten, sofern Ereignis $A$ eintritt — aber nicht zwangsläufig umgekehrt. Dann bedingt Ereignis $A$ das Ereignis $B$ kausal.
- Ereignis $B$ könnte eintreten, sofern Ereignis $A$ nicht eintritt und umgekehrt. Dann schließen sich die Ereignisse $A$ und $B$ kausal aus.
$A$ und $B$ sind kausal äquivalent
- $A$: Lena hat in der Prüfung alle Aufgaben richtig bearbeitet
- $B$: Lena hat eine 1+ in der Prüfung
- $C$: Felix war heute um 14:00 Uhr in der Schule
- $D$: Felix hat heute um 14:00 Uhr geschlafen
- $E$: Die Patrone ist leer
- $F$: Der Füller schreibt nicht mehr
- $G$: Felix war heute um 14:00 Uhr im Kino
- $H$: Felix war heute um 14:00 Uhr in der Schule
-
Prüfe die Aussagen bezüglich ihrer Richtigkeit.
TippsWenn ein Ereignis $M$ ein Ereignis $N$ kausal bedingt, so tritt $N$ nur dann ein, wenn $M$ eingetreten ist. Man schreibt dann $M\Rightarrow N$.
Nicht immer, wenn es schneit, bleibt auch Schnee liegen.
LösungHier untersuchen wir die Beziehungen und Verknüpfungen folgender Ereignisse
$A$: Es hat geschneit,
$B$: Es liegt Schnee und
$C$: Kinder rodeln.Nicht immer, wenn es schneit, bleibt auch Schnee liegen.
- Es gilt: $A\nRightarrow B$.
- Damit folgt: $A\Leftarrow B$.
- Es ist also: $B\Leftarrow C$.
- Es gilt: $A\nRightarrow C$.
- Es gilt: $B\nRightarrow C$.

Beziehungen und Verknüpfungen von Ereignissen

Teilmenge

Schnittmenge

Vereinigungsmenge

Verknüpfungen von Ereignissen – Begriffe UND und ODER

Ereignisse und Mengenverknüpfungen

Prinzip der Inklusion-Exklusion

Wahrscheinlichkeit und Kolmogoroff-Axiome

Summenregel für Ereignisse

Additionssatz für Wahrscheinlichkeiten

Additionssatz für Wahrscheinlichkeiten – Beispiel (1)

Additionssatz für Wahrscheinlichkeiten – Beispiel (2)

Additionssatz für Wahrscheinlichkeiten – Beispiel (3)

Additionssatz für Wahrscheinlichkeiten – Beispiel (4)

Additionssatz für Wahrscheinlichkeiten – Beispiel Lose

Ereignisalgebra
4 Kommentare
Gut
_______________________________________________________________________________________________________________________________________________Für mich sind die Geschichten auch ein wichtiger Teil eins Videos LG__________________________________________________________________________________________________________________________________________________________________
Hallo Dymarski,
vielen Dank für das positive Feedback. Es freut uns zu hören, dass dir das Video so gut gefällt. Viel Spaß weiterhin mit unseren Inhalten.
Liebe Grüße aus der Redaktion
Für mich sind die Geschichten auch ein wichtiger Teil eins Videos LG