Über 1,6 Millionen Schüler*innen nutzen sofatutor!
  • 93%

    haben mit sofatutor ihre Noten in mindestens einem Fach verbessert

  • 94%

    verstehen den Schulstoff mit sofatutor besser

  • 92%

    können sich mit sofatutor besser auf Schularbeiten vorbereiten

Additionssätze cos(a+b) und cos(a-b) – Herleitung und Beweis

Du willst ganz einfach ein neues Thema lernen
in nur 12 Minuten?
Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
  • Das Mädchen lernt 5 Minuten mit dem Computer 5 Minuten verstehen

    Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.

    92%
    der Schüler*innen hilft sofatutor beim selbstständigen Lernen.
  • Das Mädchen übt 5 Minuten auf dem Tablet 5 Minuten üben

    Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.

    93%
    der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert.
  • Das Mädchen stellt fragen und nutzt dafür ein Tablet 2 Minuten Fragen stellen

    Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.

    94%
    der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.
Bewertung

Ø 4.3 / 6 Bewertungen
Die Autor*innen
Avatar
Mathe-Team
Additionssätze cos(a+b) und cos(a-b) – Herleitung und Beweis
lernst du in der 9. Klasse - 10. Klasse

Additionssätze cos(a+b) und cos(a-b) – Herleitung und Beweis Übung

Du möchtest dein gelerntes Wissen anwenden? Mit den Aufgaben zum Video Additionssätze cos(a+b) und cos(a-b) – Herleitung und Beweis kannst du es wiederholen und üben.
  • Gib die beiden Additionssätze für den Kosinus an.

    Tipps

    Der Additionssatz gibt eine Formel zur Berechnung des Kosinuswertes von Summen oder Differenzen von Winkeln an. Dabei werden die Kosinus- und Sinuswerte der einzelnen Winkel benötigt.

    Der trigonometrischen Pythagoras $\sin^2(\alpha)+\cos^2(\alpha)=1$ lässt sich mit einem Kosinussatz herleiten, indem du in $\cos (\alpha -\beta)$ die Annahme $\beta =\alpha$ machst.

    Beachte, dass $\cos (2\cdot \alpha)=\cos (\alpha +\alpha )= \cos^2 (\alpha ) -\sin^2 (\alpha ) $ ist.

    Die Ausdrücke für $\cos (\alpha +\beta)$ und $\cos (\alpha -\beta)$ unterscheiden sich nur in einem Vorzeichen.

    Lösung

    Die Additionssätze für den Kosinus geben Formeln an für die Berechnung des Kosinus

    • von Summen oder
    • von Differenzen
    von Winkeln:
    • $\cos(\alpha+\beta)=\cos(\alpha)\cdot\cos(\beta)-\sin(\alpha)\cdot\sin(\beta)$ sowie
    • $\cos(\alpha-\beta)=\cos(\alpha)\cdot\cos(\beta)+\sin(\alpha)\cdot\sin(\beta)$.

  • Beschreibe, wie der Additionssatz $\cos(\alpha+\beta)=\cos(\alpha)\cdot\cos(\beta)-\sin(\alpha)\cdot\sin(\beta)$ bewiesen werden kann.

    Tipps

    Beginne mit einer der gegebenen Aussagen, wo der Kosinus als Funktion auftaucht. Schließlich willst du ja etwas über den Kosinus von $\alpha +\beta$ aussagen.

    Die erste binomische Formel lautet allgemein:

    Lösung

    1. Man startet mit dem Kosinussatz $c^2=a^2+b^2-2\cdot a \cdot b \cdot \cos(\gamma)$.
    2. Nach dem Winkelsummensatz ist $\alpha+\beta+\gamma=180^\circ$ und damit $\gamma=180^\circ-(\alpha+\beta)$.
    3. Einer Formelsammlung kann entnommen werden, dass $\cos(180^\circ-(\alpha+\beta))=-\cos(\alpha+\beta)$ ist.
    4. Es gilt also: $c^2=a^2+b^2+2\cdot a \cdot b \cdot \cos(\alpha+\beta)$.
    5. Mit dem Satz des Pythagoras kann
    • in dem Dreieck $\Delta_{ADC}$: $b^2=\overline{AD}^2+\overline{DC}^2$ und damit $\overline{AD}^2=b^2-\overline{DC}^2$ hergeleitet werden und ebenso
    • in dem Dreieck $\Delta_{DBC}$: $a^2=\overline{DB}^2+\overline{DC}^2$ und damit $\overline{DB}^2=a^2-\overline{DC}^2$.
    6. Nun verwendet man noch Winkelfunktionen in rechtwinkligen Dreiecken
    • in $\Delta_{ADC}$: $\sin(\alpha)=\frac{\overline{DC}}{b}$ oder äquivalent dazu $\overline{DC}=\sin(\alpha)\cdot b$ sowie
    • $\cos(\alpha)=\frac{\overline{AD}}{b}$ oder äquivalent dazu $\overline{AD}=\cos(\alpha)\cdot b$.
    • In $\Delta_{DBC}$: $\sin(\beta)=\frac{\overline{DC}}{a}$ oder äquivalent dazu $\overline{DC}=\sin(\beta)\cdot a$ sowie
    • $\cos(\beta)=\frac{\overline{DB}}{a}$ oder äquivalent dazu $\overline{DB}=\cos(\beta)\cdot a$.
    • Nun kann der Additionssatz unter Verwendung der hergeleiteten Gleichungen bewiesen werden. Wir haben bereits gezeigt:
    $c^2=a^2+b^2+2\cdot a \cdot b \cdot \cos(\alpha+\beta)$.

    • Es gilt $c=\overline{AD}+\overline{DB}$, also ist
    $\left(\overline{AD}+\overline{DB}\right)^2 = a^2+b^2+2\cdot a \cdot b \cdot \cos(\alpha+\beta)$.

    • Nun wird die 1. binomische Formel angewendet:
    $\overline{AD}^2+2\cdot \overline{AD}\cdot \overline{DB}+\overline{DB}^2= a^2+b^2+2\cdot a \cdot b \cdot \cos(\alpha+\beta)$.

    • Durch Einsetzen von $\overline{AD}^2=b^2-\overline{DC}^2$ sowie $\overline{DB}^2=a^2-\overline{DC}^2$ erhält man
    $b^2-\overline{DC}^2+2\cdot \overline{AD}\cdot \overline{DB}+a^2-\overline{DC}^2= a^2+b^2+2\cdot a \cdot b \cdot \cos(\alpha+\beta)$.

    • Es ist $\overline{AD}=\cos(\alpha)\cdot b$ sowie $\overline{DB}=\cos(\beta)\cdot a$. Dies führt zu
    $b^2-\overline{DC}^2+2\cdot\cos(\alpha)\cdot b \cdot\cos(\beta)\cdot a +a^2-\overline{DC}^2= a^2+b^2+2\cdot a \cdot b \cdot \cos(\alpha+\beta)$.

    • Die Terme können zu
    $a^2+b^2+2\cdot a \cdot b \cdot\cos(\alpha)\cdot\cos(\beta)-2\cdot \overline{DC}\cdot \overline{DC}=a^2+b^2+2\cdot a \cdot b \cdot \cos(\alpha+\beta)$

    umgeformt werden.

    • Mit $\overline{DC}=\sin(\alpha)\cdot b$ sowie $\overline{DC}=\sin(\beta)\cdot a$ erhält man
    $a^2+b^2+2\cdot a \cdot b \cdot\cos(\alpha)\cdot\cos(\beta)-2\cdot a\cdot b\cdot \sin(\alpha)\cdot \sin(\beta)=a^2+b^2+2\cdot a \cdot b \cdot \cos(\alpha+\beta)$.

    • Da auf beiden Seiten $a^2+b^2$ steht, kann dies subtrahiert werden zu
    $2\cdot a \cdot b \cdot\cos(\alpha)\cdot\cos(\beta)- 2\cdot a\cdot b\cdot \sin(\alpha)\cdot \sin(\beta)=2\cdot a \cdot b \cdot \cos(\alpha+\beta)$.

    Zuletzt wird durch $2\cdot a\cdot b$ dividiert und man gelangt zu

    $\cos(\alpha)\cdot\cos(\beta)- \sin(\alpha)\cdot \sin(\beta)=\cos(\alpha+\beta)$.

    Dies ist der gesuchte Additionssatz.

  • Berechne $\cos(75^\circ)$ mit Hilfe des Additionssatzes $\cos(\alpha+\beta)=\cos(\alpha)\cdot \cos(\beta)-\sin(\alpha)\cdot \sin(\beta)$.

    Tipps

    Es ist $75^\circ=30^\circ+45^\circ$.

    Also ist $\cos(75^\circ)=\cos(30^\circ+45^\circ)$.

    Lösung

    Es ist $\cos(75^\circ)=\cos(30^\circ+45^\circ)$. Also kann der Additionssatz $\cos(\alpha+\beta)=\cos(\alpha)\cdot \cos(\beta)-\sin(\alpha)\cdot \sin(\beta)$ verwendet werden, wobei $\alpha=30^\circ$ und $\beta=40^\circ$:

    $\begin{align*} \cos(30^\circ+45^\circ)&=\cos(30^\circ)\cdot \cos(45^\circ)-\sin(30^\circ)\cdot \sin(45^\circ)\\ &=\frac12\cdot \sqrt3\cdot \frac12\cdot \sqrt2-\frac12\cdot \frac12\cdot \sqrt2\\ &=\frac14\cdot \sqrt2\cdot(\sqrt3-1)\\ &=\frac{\sqrt6-\sqrt2}{4}\\ &\approx 0,518. \end{align*}$

  • Begründe den trigonometrischen Pythagoras $\sin^2(\alpha)+\cos^2(\alpha)=1$ mit einem Additionssatz.

    Tipps

    Dies ist der Verlauf der Kosinusfunktion.

    Den Wert von $\cos (\alpha -\alpha )$ kannst du entweder direkt angeben oder über einen Additionssatz bestimmen.

    Lösung

    Mit Hilfe des Additionssatzes

    $\cos(\alpha-\beta)=\cos(\alpha)\cdot \cos(\beta)+\sin(\alpha)\cdot \sin(\beta)$

    kann der trigonometrische Pythagoras $\sin^2(\alpha)+\cos^2(\alpha)=1$ bewiesen werden.

    Hierfür verwendet man $0^\circ=\alpha-\alpha$ für einen beliebigen Winkel $\alpha$ sowie $\cos(0^\circ)=1$:

    $\begin{align*} 1&=\cos(0^\circ)\\ &=\cos(\alpha-\alpha)\\ &=\cos(\alpha)\cdot \cos(\alpha)+\sin(\alpha)\cdot \sin(\alpha)\\ &=\cos^2(\alpha)+\sin^2(\alpha). \end{align*}$

  • Gib den Beweis des Additionssatzes $\cos(\alpha-\beta)=\cos(\alpha)\cdot \cos(\beta)+\sin(\alpha)\cdot \sin(\beta)$ wieder.

    Tipps

    Die Sinusfunktion ist punktsymmetrisch zum Koordinatenursprung.

    Die Kosinusfunktion ist achsensymmetrisch zur y-Achse.

    Ersetze in der bekannten Formel für $\cos (\alpha +\beta )$ den Winkel $\beta$ durch $-\beta$.

    Lösung

    Zum Nachweis des Additionssatzes $\cos(\alpha-\beta)=\cos(\alpha)\cdot \cos(\beta)+\sin(\alpha)\cdot \sin(\beta)$ wird der Additionssatz $\cos(\alpha+\beta)=\cos(\alpha)\cdot \cos(\beta)-\sin(\alpha)\cdot \sin(\beta)$ verwendet.

    Zusätzlich benötigt man Symmetrieeigenschaften

    • des Sinus: $\sin(-\alpha)=-\sin(\alpha)$, d.h. die Sinusfunktion ist punktsymmetrisch zum Koordinatenursprung.
    • des Kosinus: $\cos(-\alpha)=\cos(\alpha)$, d.h. die Kosinusfunktion ist achsensymmetrisch zur y-Achse.
    Wir berechnen:

    $\begin{align*} \cos(\alpha-\beta)& =\cos(\alpha)\cdot\cos(-\beta)- \sin(\alpha)\cdot \sin(-\beta) \\ & = \cos(\alpha)\cdot\cos(\beta)- \sin(\alpha)\cdot (-\sin(\beta))\\ & = \cos(\alpha)\cdot\cos(\beta)+ \sin(\alpha)\cdot \sin(\beta). \end{align*}$

  • Leite eine Formel für $\cos(2\cdot \alpha)$ her.

    Tipps

    Verwende den Additionssatz

    $\cos(\alpha+\beta)=\cos(\alpha)\cdot \cos(\beta)-\sin(\alpha)\cdot \sin(\beta)$.

    Es ist $2\cdot \alpha=\alpha+\alpha$.

    Verwende den trigonometrischen Pythagoras

    $\sin^2(\alpha)+\cos^2(\alpha)=1$.

    Beachte, dass zwei Formeln richtig sind, da du den trigonometrischen Pythagoras sowohl nach $\sin^2(\alpha)$ als auch nach $\cos^2(\alpha)$ umstellen kannst.

    Lösung

    Unter Verwendung von $2\cdot \alpha=\alpha+\alpha$ sowie des Additionssatzes

    $\cos(\alpha+\beta)=\cos(\alpha)\cdot \cos(\beta)-\sin(\alpha)\cdot \sin(\beta)$

    mit $\beta=\alpha$ kann wie folgt umgeformt werden:

    $\begin{align*} \cos(2\cdot \alpha)&=\cos(\alpha)+\cos(\alpha)\\ &=\cos(\alpha)\cdot \cos(\alpha)-\sin(\alpha)\cdot \sin(\alpha)\\ &=\cos^2(\alpha)-\sin^2(\alpha). \end{align*}$

    Mit dem trigonometrischen Pythagoras $\sin^2(\alpha)+\cos^2(\alpha)=1$ erhältst du $\sin^2(\alpha)=1-\cos^2(\alpha)$ bzw. $\cos^2(\alpha)=1-\sin^2(\alpha)$.

    Setzt du dies in die obige Formel ein, so bekommst du $\cos(2\cdot \alpha) =2\cdot \cos^2(\alpha)-1$ bzw. $\cos(2\cdot \alpha) =1-2\cdot \sin^2(\alpha)$.

30 Tage kostenlos testen
Mit Spaß Noten verbessern
und vollen Zugriff erhalten auf

8.044

sofaheld-Level

6.601

vorgefertigte
Vokabeln

7.921

Lernvideos

36.998

Übungen

34.261

Arbeitsblätter

24h

Hilfe von Lehrer*
innen

laufender Yeti

Inhalte für alle Fächer und Klassenstufen.
Von Expert*innen erstellt und angepasst an die Lehrpläne der Bundesländer.

30 Tage kostenlos testen

Testphase jederzeit online beenden