Leider ist der angeforderte Link abgelaufen. Bitte informiere deinen Lehrer.

Achsensymmetrie – Figuren spiegeln 06:36 min

Textversion des Videos

Transkript Achsensymmetrie – Figuren spiegeln

Kappu hat eine Nachricht von seiner Freundin Peggy erhalten. Doch fehlt da nicht die Hälfte? Wir können die Nachricht mithilfe des achsensymmetrischen Spiegelns von Figuren vervollständigen. Was ist denn eine achsensymmetrische Figur? Können wir eine Form SO aufteilen, dass sich zwei gleiche Teile ergeben, die sich gegenseitig überdecken, so sind diese beiden Formen symmetrisch zueinander. Die Linie, die die beiden Teile voneinander trennt, nennt man Spiegelachse oder auch Symmetrieachse. Hat man also nur EINE Hälfte der Figur gegeben, vervollständigt man sie SO, dass beide Hälften gleich sind. Wir können zum Beispiel Punkte, Strecken oder ganze Formen spiegeln. Wollen wir DIESEN Punkt spiegeln, so zählen wir den Abstand zur Symmetrieachse. Wie viele Kästchen ist der Punkt von der Symmetrieachse entfernt? Genau. 3 Kästchen. Wir zählen nun also von der Symmetrieachse 3 Kästchen in die entgegengesetzte Richtung und können den Punkt hierhin spiegeln. Klappen wir das Blatt nun entlang der Symmetrieachse zusammen so liegen die beiden Punkte genau übereinander. Man nennt sie dann auch deckungsgleich. Ähnlich gehen wir bei Strecken vor. DIESE Strecke liegt genau an der Symmetrieachse an. Wir spiegeln sie, indem wir sie verlängern und zwar um genau die gleiche Länge. Wie viele Kästchen können wir entlang der Strecke zählen? 5 Kästchen. Wir verlängern die Strecke also um die Länge von 5 Kästchen und auch hier überdecken sie sich, wenn wir das Blatt an der Symmetrieachse zusammenklappen. Lasst uns doch nun zusammen versuchen, Kappus Botschaft von Peggy zu entschlüsseln. Beginnen wir dazu mit DIESEM Teil. Erkennst du die verschiedenen Formen? Wir haben hier ein Rechteck und das hier sind zwei Quadrate. Fangen wir damit an, das Rechteck zu spiegeln. Wir können dazu zunächst DIESE beiden Strecken spiegeln. Wie lang sind die Strecken? 3 Kästchen. Wir verlängern also diese Strecke um 3 Kästchen und auch diese Strecke um 3 Kästchen. Wir können das Rechteck dann vervollständigen, indem wir die beiden Strecken HIER miteinander verbinden. Nun wollen wir dieses Quadrat spiegeln. Es liegt mit einer Ecke direkt an dem Rechteck an. Also muss es auch auf DIESER Seite mit einer Ecke an dem Rechteck anliegen. Wir können DIESES Quadrat spiegeln, indem wir zählen, wie viele Kästchen es von der Symmetrieachse entfernt ist. Wie viele Kästchen sind es? 4 Kästchen. Also muss auch das Quadrat auf der anderen Seite 4 Kästchen von der Symmetrieachse entfernt sein. Den Teil von Peggys Botschaft haben wir ja schon super gelöst! Machen wir mal weiter. Wir können hier DIESE Strecke um die Länge von 2 Kästchen verlängern. Da die Form direkt an der Symmetrieachse anliegt, können wir das Ende der Strecke nun einfach mit DIESEM Punkt verbinden. Super! Jetzt bleibt nur noch einen Teil der Nachricht, der gespiegelt werden muss. Wie weit ist dieses Rechteck von der Spiegelachse entfernt? 3 Kästchen. Wir können hier also ein Rechteck mit der Länge von 2 Kästchen und der Breite von einem Kästchen zeichnen. Kappu möchte die Formen nun noch ausmalen. Während er das tut, schauen wir uns einmal an, was wir gelernt haben. Hat man EINE Hälfte einer symmetrischen Figur gegeben, vervollständigt man sie SO, dass beide Hälften gleich sind. Liegt die Figur direkt an der Symmetrieachse, können wir die Seiten über die Symmetrieachse hinweg so ergänzen, dass die Formen gleich sind. Liegt die Figur NICHT direkt an der Symmetrieachse, so zählen wir zunächst den Abstand zur Symmetrieachse. Dann können wir die Figur mit demselben Abstand zur Symmetrieachse in der gleichen Größe zeichnen. Und was war die geheime Botschaft nun? Ein Smiley! Da hat Peggy sich aber etwas Schönes ausgedacht.

30 Tage kostenlos testen