30 Tage risikofrei testen

Überzeugen Sie sich von der Qualität unserer Inhalte im Basis- oder Premium-Paket.

Überzeugen Sie sich von der Qualität unserer Inhalte.

30 Tage risikofrei testen

Skalarprodukt – Flächeninhalte von Parallelogrammen und Dreiecken – Übungen

Mit Spaß üben und Aufgaben lösen

Entschuldige, die Übungen sind zurzeit nur auf Tablets und Computer verfügbar. Um die Übungen zu nutzen, logge dich bitte mit einem dieser Geräte ein.

Brauchst du noch Hilfe? Schau jetzt das Video zur Übung Skalarprodukt – Flächeninhalte von Parallelogrammen und Dreiecken

Hallo! Iin diesem Video zeige ich dir, wie man den Flächeninhalt eines Dreiecks im Raum (R³) mit Hilfe des Skalarprodukts ausrechnen kann. Die Idee ist, dass man das Dreieck zu einem Parallellogramm erweitert. Der Flächeninhalt eines Parallelogramms im Raum ist einfach mit der Höhe und einer Seite des Parallellogramms auszurechnen. Diese Formel formen wir mittels des Skalarprodukts um. Außerdem brauchen wir für die Umformung die trigonometrischen Beziehungen in einem rechtwinkligen Dreieck, wie z.B. cos(φ)²+sin(φ)²=1 für einen beliebigen Winkel φ. Am Ende erhalten wir eine einfache Formel ohne die Höhe, sondern nur mit dem Skalarprodukt und den Beträgen der beiden Vektoren, die das Dreieck aufspannen. Viel Spaß und Erfolg beim Lernen!

Zum Video
Aufgaben in dieser Übung
Gib die Formel zur Berechnung des Flächeninhaltes eines Parallelogramms an.
Berechne den Flächeninhalt des Dreiecks $ABC$.
Berechne das Skalarprodukt und die Länge der Vektoren.
Berechne den Flächeninhalt des Dreiecks.
Stelle die Formel zur Berechnung des Flächeninhaltes eines Dreiecks auf.
Wende anhand des Dreiecks $ABC$ eine andere Formel zur Berechnung des Flächeninhalts an.