Lagebeziehungen zweier Geraden
Es sind verschiedene Lagebeziehung von Geraden möglich. Sie können parallel, identisch, sich schneidend oder senkrecht zueinander sein. Möchtest du mehr wissen? Lies weiter und entdecke alle Details!
- Lagebeziehungen zweier Geraden
- Parallele Geraden – Definition
- Identische Geraden – Definition
- Schnittpunkt zweier Geraden – Definition
- Senkrechte Geraden – Definition

in nur 12 Minuten? Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
-
5 Minuten verstehen
Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.
92%der Schüler*innen hilft sofatutor beim selbstständigen Lernen. -
5 Minuten üben
Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.
93%der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert. -
2 Minuten Fragen stellen
Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.
94%der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.

Geometrische Grundbegriffe – Überblick

Geraden, Strecken und rechte Winkel

Parallele und orthogonale/senkrechte Geraden – Definition

Geometrische Lagebezeichnungen – waagerecht, senkrecht, horizontal und vertikal

Horizontale und vertikale Geraden im Koordinatensystem

Lagebeziehungen zweier Geraden

Was ist ein Abstand?
Lagebeziehungen zweier Geraden Übung
-
Ergänze die Erklärung zu parallelen Geraden.
TippsSchaue dir die Abbildung zweier paralleler Geraden $g$ und $h$ an.
Unter dem Abstand versteht man hier die kürzeste Strecke zwischen zwei Geraden.
LösungWenn der Abstand zwischen zwei Geraden immer gleich ist, so bezeichnet man diese Geraden auch als parallele Geraden.
Ihre Lage zueinander ist parallel. Man schreibt $g\parallel h$.
Ein Spezialfall der Parallelität ist die Identität: Wenn zwei Geraden identisch sind, ist der Abstand immer gleich $0$. Man schreibt $g=h$ oder $g\equiv h$.
-
Gib an, welche möglichen Lagebeziehungen es bei zwei Geraden geben kann.
TippsParallele Geraden haben überall den gleichen Abstand zueinander.
Identische Geraden sind ebenfalls parallele Geraden.
Umgekehrt gilt dies nicht: Parallele Geraden sind nicht auch identische Geraden.
Wenn Geraden nicht parallel sind, dann müssen sie sich schneiden.
LösungEs gibt verschiedene Lagebeziehungen zwischen zwei Geraden.
Wir betrachten diese nun von oben nach unten.
- Sie können parallel zueinander sein. Dann haben sie überall den gleichen Abstand. Dies schreibt man so: $g\parallel h$.
- Sie können auch identisch sein. Dies ist ein Spezialfall der Parallelität. Dies schreibt man entweder $g=h$ oder $g\equiv h$.
- Wenn zwei Geraden sich schneiden, haben sie einen Schnittpunkt $A$ sowie zwei Schnittwinkel $\alpha$ und $\beta$. Von den Schnittwinkeln ist bis auf den folgenden Fall der eine ein spitzer und der andere ein stumpfer Winkel. Hier schreibt man $g\not\parallel h$.
- Ein Sonderfall des Schnittes liegt vor, wenn die Schnittwinkel gleich groß sind: $\alpha=\beta=90^\circ$. Man sagt dann, dass die Geraden senkrecht zueinander sind, und schreibt $g\perp h$.
-
Ordne die Geraden ihrer Lage zu der Geraden $g$ zu.
TippsDie Geraden, welche $g$ senkrecht schneiden, gehören zu „senkrecht zu $g$“ und nicht zu „schneidet $g$“.
Zu jeder der gegebenen Lagen findest du zwei Geraden.
Schaue dir die Abbildung an:
Steht eine Gerade $h$ senkrecht zu $g$, welche wiederum senkrecht zu $k$ steht, dann sind $h$ und $k$ parallel.
LösungSchauen wir uns zunächst die Geraden an, die senkrecht zu $g$ sind:
- An den Winkeln $\alpha=\beta$ erkennst du, dass $h\perp g$ ist.
- An den Winkeln $\alpha'=\beta'$ erkennst du, dass $l\perp g$ ist.
- Es ist $\alpha''=\beta''$. Das bedeutet, dass die Gerade $k$ senkrecht zu $h$ ist. Also ist $k\parallel g$.
- Ebenso ist $j\perp l$ und damit $j\parallel g$.
- $m\not\parallel g$
- $n\not\parallel g$
-
Entscheide, welche Lagebeziehungen vorliegen.
TippsZwei Geraden $g$ und $h$ stehen senkrecht auf einer dritten Geraden $l$.
Dann sind die beiden Geraden $g$ und $h$ parallel zueinander.
Es sind jeweils zweimal zwei Geraden parallel zueinander.
Wenn die Schnittwinkel identisch sind, sind die Geraden, welche sich schneiden, senkrecht zueinander.
LösungBeginnen wir mit der Geraden $k$.
Die Schnittwinkel $\alpha'$ sowie $\beta'$ mit der Geraden $m$ stimmen überein. Somit sind die Geraden $k$ und $m$ senkrecht zueinander. Ebenso stimmen die Schnittwinkel $\alpha$ und $\beta$ mit der Geraden $l$ überein. Dann sind auch $k$ und $l$ senkrecht zueinander: $k\perp m$ sowie $k\perp l$.
Insbesondere sind die beiden Geraden $m$ und $l$ parallel zueinander.
Da $k$ zu keiner der übrigen Geraden parallel ist, schneidet sie alle vier übrigen Geraden.
Alle anderen Geraden schneiden jeweils drei Geraden:
- $m$ schneidet $k$, $g$ und $h$.
- $g$ schneidet $m$, $l$ und $k$.
- $h$ schneidet $m$, $l$ und $k$.
- $l$ schneidet $k$, $g$ und $h$.
-
Beschreibe, was eine Gerade ist.
TippsStelle dir einen Sonnenstrahl vor: Dieser hat einen Ausgangspunkt (oder Anfangspunkt), nämlich die Sonne, und keinen Endpunkt.
So sind in der Mathematik Strahlen beschrieben.
Eine Strecke hat sowohl einen Anfangs- als auch einen Endpunkt. Hier siehst du die Strecke $\overline{AB}$.
LösungEine Gerade wird üblicherweise mit einem Kleinbuchstaben beschrieben.
Hier siehst du die beiden Geraden $g$ und $h$.
Das Besondere an Geraden ist, dass sie weder einen Anfangs- noch einen Endpunkt haben.
Es gibt noch weitere geometrische Formen, die auf eine gewisse Art einer Gerade ähnlich sehen:
- Eine Strecke hat sowohl einen Anfangs- als auch einen Endpunkt.
- Ein Strahl hat zwar einen Anfangs-, jedoch keinen Endpunkt.
-
Prüfe die folgenden Aussagen.
TippsÜberlege dir gegebenenfalls ein Gegenbeispiel.
Zeichne die jeweilige Situation auf ein Blatt Papier und prüfe die Aussagen damit.
Zwei Geraden können sich auch in einem rechten Winkel schneiden.
Zwei Aussagen sind richtig.
LösungWenn $g$ und $h$ sowie $g$ und $k$ sich schneiden, dann schneiden sich auch $h$ und $k$: Diese Aussage ist falsch, wie du an dem Bild sehen kannst.
$g$ und $h$ sowie $g$ und $k$ schneiden sich. $h$ und $k$ schneiden sich allerdings nicht.
In diesem Bild kannst du auch erkennen, dass die zweite Aussage wahr, die dritte jedoch falsch ist.
Sind zwei Geraden parallel zueinander, so haben sie überall den gleichen Abstand: Sind also $g$ und $h$ parallel sowie $h$ und $k$ parallel, dann haben auch $g$ und $k$ überall den gleichen Abstand. Dieser ergibt sich je nach Lage als Summe oder Differenz der Abstände. $g$ und $k$ sind auch parallel. Die vierte Aussage ist wahr.
Die fünfte Aussage ist wieder falsch. Das Gegenbeispiel zu der ersten Aussage kannst du auch hier verwenden.
9.369
sofaheld-Level
6.600
vorgefertigte
Vokabeln
8.224
Lernvideos
38.691
Übungen
33.496
Arbeitsblätter
24h
Hilfe von Lehrkräften

Inhalte für alle Fächer und Klassenstufen.
Von Expert*innen erstellt und angepasst an die Lehrpläne der Bundesländer.
Testphase jederzeit online beenden
Beliebteste Themen in Mathematik
- Römische Zahlen
- Prozentrechnung
- Prozentrechnung - Übungen
- Primzahlen
- Geometrische Lagebezeichnungen
- Was ist eine Ecke?
- Rechteck
- Was ist eine Gleichung?
- Pq-Formel
- Binomische Formeln
- Trapez
- Flächeninhalt – Übungen
- Volumen Zylinder
- Potenzgesetze – Übungen
- Umfang Kreis
- Zehnerzahlen vergleichen und ordnen – Übungen
- Quadrat
- Zahlen sortieren – Übungen
- Division
- Binomische Formeln – Übungen
- Raute
- Brüche umwandeln Übungen
- Parallelogramm
- Ungleichungen – Übungen
- Polynomdivision
- Zahlen bis 1000 ordnen – Übungen
- Was Ist Eine Viertelstunde
- Terme mit Variablen aufstellen – Übungen
- Prisma
- Die Grundrechenarten – Übungen
- Mitternachtsformel
- Äquivalenzumformung
- Grundrechenarten Begriffe
- Größer Kleiner Zeichen
- Dreiecksarten
- Punkt-vor-Strich und Klammern-zuerst-Regel
- Aufbau von Dreiecken
- Quader
- Zahlen runden – Übungen
- Satz Des Pythagoras
- Ziffern und Stellenwerte – Übungen
- Dreieck Grundschule
- Koordinatensystem – Übungen
- Erste Binomische Formel
- Kreis
- Trigonometrie
- Trigonometrische Funktionen
- Standardabweichung
- Quadratische Gleichungen – Übungen
- Flächeninhalt