Über 1,6 Millionen Schüler*innen nutzen sofatutor!
  • 93%

    haben mit sofatutor ihre Noten in mindestens einem Fach verbessert

  • 94%

    verstehen den Schulstoff mit sofatutor besser

  • 92%

    können sich mit sofatutor besser auf Schularbeiten vorbereiten

Zyklotron (Übungsvideo)

Du willst ganz einfach ein neues Thema lernen
in nur 12 Minuten?
Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
  • Das Mädchen lernt 5 Minuten mit dem Computer 5 Minuten verstehen

    Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.

    92%
    der Schüler*innen hilft sofatutor beim selbstständigen Lernen.
  • Das Mädchen übt 5 Minuten auf dem Tablet 5 Minuten üben

    Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.

    93%
    der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert.
  • Das Mädchen stellt fragen und nutzt dafür ein Tablet 2 Minuten Fragen stellen

    Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.

    94%
    der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.
Bewertung

Ø 5.0 / 1 Bewertungen
Die Autor*innen
Avatar
Jakob Köbner
Zyklotron (Übungsvideo)
lernst du in der 11. Klasse - 12. Klasse - 13. Klasse

Zyklotron (Übungsvideo) Übung

Du möchtest dein gelerntes Wissen anwenden? Mit den Aufgaben zum Video Zyklotron (Übungsvideo) kannst du es wiederholen und üben.
  • Gib den Ansatz für die Berechnung der Winkelgeschwindigkeit im Zyklotron an.

    Tipps

    Zentripetalkraft $=$ Lorenz-Kraft

    Lösung

    Wir können den Ansatz Zentripetalkraft $=$ Lorenz-Kraft wählen, da die geladenen Teilchen im Zyklotron durch die Lorenz-Kraft auf der Kreisbahn gehalten werden.

    $ F_{L} = F_{ZP} \to \frac {m \cdot v^2}{r} = Q \cdot v \cdot B$

    Da wir eine Kreisbahn beschreiben, ersetzen wir die Geschwindigkeiten $v$ mit der Winkelgeschwindigkeit $\omega$.

    Für diese gilt $ \omega = \frac {v}{r} $.

    Wir setzen in den Ansatz ein und erhalten so $ Q \cdot B = m \cdot \frac{\omega}{r} = m \cdot \omega$.

    Daraus können wir umstellen und erhalten für die Winkelgeschwindigkeit im Zyklotron $ \omega = \frac{ Q \cdot B}{m}$.

  • Bestimme die Spannung des Linearbeschleunigers.

    Tipps

    $ U \cdot Q_p = \frac{1}{2} \cdot m_p \cdot v^2 $

    Die kinetische Energie des Protons, ausgedrückt durch Masse und Geschwindigkeit, muss also gleich dem Produkt aus angelegter Spannung und Ladung des Protons sein.

    $ U = \frac{m \cdot v^2}{2 \cdot Q_p}$

    Lösung

    Um zu ermitteln, wie groß die Spannung am Linearbeschleuniger sein muss, behelfen wir uns mit einem Ansatz:

    $ U \cdot Q_p = \frac{1}{2} \cdot m_p \cdot v^2 $.

    Die kinetische Energie des Protons, ausgedrückt durch Masse und Geschwindigkeit, muss also gleich dem Produkt aus angelegter Spannung und Ladung des Protons sein.

    Um nun $U$ zu ermitteln stellen wir um und erhalten $ U = \frac{m \cdot v^2}{2 \cdot Q_p}$.

    Wir haben im Aufgabenkopf alle notwendigen Werte gegeben und setzten ein:

    $ U = \frac{1,67\cdot 10^{-27} kg \cdot 2,4 \cdot 10^7 {\frac{m}{s}}^2}{2 \cdot 1,6 \cdot 10^{-19} As} = 3.006.000 \frac{kg m^2}{As^3} = 3 \cdot 10^6 V = 3 MV$.

  • Berechne die Geschwindigkeit im Zyklotron.

    Tipps

    Ansatz $ \frac{mv^2}{r} = QvB$

    $v = \frac{r \cdot Q_p \cdot B}{m_p} $

    Lösung

    Die Geschwindigkeit im Zyklotron lässt sich mit dem Ansatz $ \frac{mv^2}{r} = QvB$ bestimmen. Dazu kürzen wir zunächst einmal mit $v$ und erhalten dann $\frac{mv}{r} = QB$.

    Nun stellen wir nach der gesuchten Größe, also $v$ um und erhalten $v = \frac{r \cdot Q_p \cdot B}{m_p} $.

    Große Geschwindigkeiten werden also dann erreicht, wenn Ladung, Magnetfeld und Radius möglichst groß sind und die Masse möglichst klein ist.

    Betrachten wir ein Beispiel.

    Es sei $ r = 0,9m$ und $ B = 0,23 T$ .

    Einsetzen liefert $v = \frac{0,9 m\cdot 1,6\cdot 10^{-19} C \cdot 0,23T}{1,67 \cdot 10^{-27} kg} = 19,83 \cdot 10^6 \frac{m}{s} $.

    Bei gegebenen Randbedingungen, würde ein Proton also die Geschwindigkeit $19,83 \cdot 10^6 \frac{m}{s}$, also etwa $6,6 %$ der Lichtgeschwindigkeit erreichen.

    Ab einer Geschwindigkeit von 0,1c müssten wir relativistisch rechnen.

  • Bestimme die Masse des Elektrons.

    Tipps

    $\frac{m \cdot v^2}{r} = Q \cdot v \cdot B $

    $m = \frac{Q \cdot v \cdot B \cdot r}{v^2} $

    $e = 1,6 \cdot 10^{-19} C $

    Lösung

    Stellen wir den Ansatz $\frac{m \cdot v^2}{r} = Q \cdot v \cdot B $ nach der Masse $m$ um, erhalten wir $m = \frac{Q \cdot v \cdot B \cdot r}{v^2} $.

    Wir können also die Masse $m$ eines Teilchens im Zyklotron bestimmen, wenn wir wissen, wie dieses geladen (Ladung Q) ist und mit welcher Geschwindigkeit $v$ und auf welcher Bahn (Radius $r$) es sich im Magnetfeld $B$ des Zyklotrons bewegt.

    Betrachten wir nun ein einzelnes Elektron, welches in ein Magnetfeld $ B = 0,13 \mu T$ eingebracht wird.

    Das Elektron trägt natürlich die Einheitsladung $e = 1,6 \cdot 10^{-19} C $. Die Geschwindigkeit und der Radius seien ebenfalls bekannt und mit $ r = 0,65 m$ und $v = 14.840,83 \frac{m}{s}$ gegeben.

    Nun setzen wir die Informationen in unsere umgestellte Gleichung ein und erhalten $m = \frac{Q \cdot B \cdot r}{v} = \frac{1,6 \cdot 10^{-19} C \cdot 0,13 \mu T \cdot 0,65 m}{ 14.840,83 \frac{m}{s}} = 9,11 \cdot 10^{-31} kg $.

    Die Masse des Elektron muss also $ m_{el} = 9,11 \cdot 10^{-31} kg$ betragen.

    Genauso wie für das Elektron, können wir auch die Masse eines Protons oder bei bekannten Massen die zugehörigen Ladungen angeben.

    Mit dem Zyklotron können wir also, aufgrund des Verhaltens eines geladenen Teilchens im Magnetfeld, einen Zusammenhang zwischen Masse und Ladung darstellen.

  • Berechne die magnetische Flussdichte.

    Tipps

    $ v = 0,1 \cdot c = 0,1 \cdot 3\cdot 10^8 \frac{m}{s} = 3 \cdot 10^7 \frac{m}{s}$.

    $ \frac{m_p \cdot v}{r} = Q_p \cdot B$

    Lösung

    In dieser Aufgabe soll berechnet werden, wie groß das herrschende Magnetfeld innerhalb des Zyklotrons sein muss, damit das Proton eine Geschwindigkeit von $ v = 0,1 \cdot c $ erreicht.

    Wir bilden einen Ansatz und stellen um: $ \frac{m_p \cdot v}{r} = Q_p \cdot B \to B = {m_p \cdot v}{r \cdot Q_p} $.

    Die Magnetfeldstärke lässt sich also angeben, wenn die Masse, Geschwindigkeit und Ladung des Protons sowie der Radius des Zyklotrons bekannt sind.

    Die Geschwindigkeit soll in unserem Experiment ja $ v = 0,1 \cdot c = 0,1 \cdot 3\cdot 10^8 \frac{m}{s} = 3 \cdot 10^7 \frac{m}{s}$ betragen.

    Die angestrebte Geschwindigkeit beträgt also $ 3 \cdot 10^7 \frac{m}{s}$.

    Setzen wir nun alles ein, so ergibt sich: $ B = {1,67 \cdot 10^{-27} kg \cdot 3 \cdot 10^7 \frac{m}{s}}{0,5 m \cdot 1,6 \cdot 10^{-19} C} = 0,626 \frac{kg}{As^2} = 0,626 T $.

    Damit die Geschwindigkeit von $ 3 \cdot 10^7 \frac{m}{s} $, für ein Proton im Zyklotron mit $ r = 0,5m$ zu erreichen ist, muss die magnetische Flussdichte $ B = 0,626 T$ betragen.

  • Berechne den notwendigen Radius des Zylklotrons.

    Tipps

    Der Ansatz ist $ \frac{mv^2}{r} = QvB$.

    Gib alle Größen in den Grundeinheiten an.

    $ r = \frac{v \cdot m_p}{Q_p \cdot B}$

    Lösung

    Um zu bestimmen, wie groß der Radius des Zyklotrons sein muss, damit eine bestimmte Geschwindigkeit $v$ bei gegebener Masse $m_p$ und Ladung $Q_p$ im bekannten Magnetfeld $B$ erreicht werden kann, machen wir zunächst einen Ansatz:

    $ \frac{mv^2}{r} = QvB$.

    Wir können mit $v$ kürzen und erhalten dann $\frac{mv}{r} = QB$.

    Nun stellen wir nach der gesuchten Größe, also $r$ um $ r = \frac{v \cdot m_p}{Q_p \cdot B}$.

    Um festzustellen, wie groß der Radius und den jeweiligen Fällen ist, setzten wir nun jeweils Masse und Ladung des Protons sowie die Geschwindigkeit $v$ und das herrschende Magnetfeld $B$ ein.

    Betrachten wir ein Beispiel.

    Für $B = 0,25 T $ und $ v = 1,5 \cdot 10^7 \frac{m}{s}$ ergibt sich für $ r = \frac{v \cdot m_p}{Q_p \cdot B} = \frac{1,5 \cdot 10^7 \frac{m}{s} \cdot 1,67 \cdot 10{-27} kg}{1,6 \cdot 10^{-19} C \cdot 0,25 T}= 0,626m$.

    Um mit einem Magnetfeld der Stärke $ 0,25 T$ ein Proton auf eine Geschwindigkeit von $ v = 1,5 \cdot 10^7 \frac{m}{s}$ zu erreichen, muss das Zyklotron einen Radius von $ r = 0,626 m$ haben.

30 Tage kostenlos testen
Mit Spaß Noten verbessern
und vollen Zugriff erhalten auf

8.374

sofaheld-Level

6.601

vorgefertigte
Vokabeln

7.944

Lernvideos

37.093

Übungen

34.339

Arbeitsblätter

24h

Hilfe von Lehrer*
innen

laufender Yeti

Inhalte für alle Fächer und Klassenstufen.
Von Expert*innen erstellt und angepasst an die Lehrpläne der Bundesländer.

30 Tage kostenlos testen

Testphase jederzeit online beenden