Über 1,6 Millionen Schüler*innen nutzen sofatutor!
  • 93%

    haben mit sofatutor ihre Noten in mindestens einem Fach verbessert

  • 94%

    verstehen den Schulstoff mit sofatutor besser

  • 92%

    können sich mit sofatutor besser auf Schularbeiten vorbereiten

Wechselstromwiderstand

Video abspielen
Du willst ganz einfach ein neues Thema lernen
in nur 12 Minuten?
Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
  • Das Mädchen lernt 5 Minuten mit dem Computer 5 Minuten verstehen

    Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.

    92%
    der Schüler*innen hilft sofatutor beim selbstständigen Lernen.
  • Das Mädchen übt 5 Minuten auf dem Tablet 5 Minuten üben

    Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.

    93%
    der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert.
  • Das Mädchen stellt fragen und nutzt dafür ein Tablet 2 Minuten Fragen stellen

    Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.

    94%
    der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.
Bewertung

Ø 4.4 / 5 Bewertungen
Die Autor*innen
Avatar
Jakob Köbner
Wechselstromwiderstand
lernst du in der 11. Klasse - 12. Klasse - 13. Klasse

Wechselstromwiderstand Übung

Du möchtest dein gelerntes Wissen anwenden? Mit den Aufgaben zum Video Wechselstromwiderstand kannst du es wiederholen und üben.
  • Tipps

    Wie ist der Ohmsche Widerstand definiert?

    Was ist der Unterschied zwischen Gleich- und Wechselspannung?

    Lösung

    Um einen Widerstand in der Wechselstromtechnik zu definieren, bleibt man bei dem Bruch, also dem Quotienten aus Spannung und Strom.

    Man stellt fest, dass es keinen Unterschied macht, ob man die Scheitelwerte oder die Effektivwerte einsetzt, da sich der Faktor Wurzel 2 herauskürzt.

    Um ihn von dem Ohmschen Widerstand zu unterscheiden, gibt man ihm den Buchstaben Z.

  • Tipps

    Wofür stehen L und C?

    Gehe nach dem Ausschlussprinzip vor.

    Lösung

    $Z_{\text{Spule}}$ muss die Induktivität der Spule $L$ beinhalten. Die korrekte Formel lautet: $Z_{\text{Spule}}=\omega \cdot L$.

    Hat man sich diese Formel gemerkt, dann ist es ein Leichtes, auf die Impedanz des Kondensators mit der Kapazität $C$ zu schließen. Der Widerstand verhält sich nämlich genau umgekehrt proportional und folgt damit der Gesetzmäßigkeit:

    $Z_{\text{Kondensator}}=\frac{1}{\omega \cdot C}$.

    Als Eselsbrücke hilft auch, sich daran zu erinnern, dass der Kondensator im Gleichstromkreis dafür sorgt, dass kein Strom fließen kann, da er den Stromkreis unterbricht. Dies drückt auch die Formel aus, wenn man sich überlegt, was mit der Impedanz passiert, wenn $\omega$ und somit die Frequenz der Wechselspannung immer kleiner wird. $Z$ würde dann immer größer.

    Der Ohmsche Widerstand im Wechselstromwiderstand ist wie gehabt $Z_{\Omega}=R=\frac{\hat U}{\hat I}$.

  • Tipps

    Welche der beiden Kurven muss den Strom und welche die Spannung darstellen?

    Überlege dir, was man bei einem Phasendiagramm auf der X-Achse ablesen kann?

    Erinnerst du dich an den Merkspruch zur Phasenverschiebung im Kondensator?

    Lösung

    In dem Phasendiagramm sind Strom und Spannungsverlauf im Kondensator dargestellt. Da beide Verläufe periodisch sind, sich also regelmäßig alle $2\pi=360°$ wiederholen, trägt man auf die X-Achse nicht die Zeit, sondern den Phasenwinkel auf.

    Die Phasenverschiebung in Spule und Kondensator ist jeweils $\frac{\pi}{2}=90°$. Im Kondensator eilt der Strom voraus. In der Spule läuft der Strom der Spannung hinterher.

    Mit diesem Wissen können wir herausfinden, dass die hellgrüne Linie die Stromstärke darstellt, da diese Kurve im Vergleich zur dunkelgrünen Spannungskurve eine 90° Phasenverschiebung nach rechts besitzt.

  • Tipps

    Was ist gegeben und was ist gesucht?

    Lösung

    Wir gehen wie immer strukturiert an diese Aufgabe heran, indem wir uns zuerst notieren, welche Größen gesucht und welche gegeben sind, und welche Formeln dazu passen.

    Gegeben:

    $L = 32\, mH$, $\qquad n=1000$

    Gesucht:

    $Z$

    Formeln:

    $Z= \omega\cdot L$, $\qquad \omega=2 \cdot \pi \cdot f$

    Wir stellen fest, dass die Windungszahl n nicht benötigt wird. Man kann nun entweder erst $\omega$ bestimmen und dies dann in die andere Formel einsetzen, oder die elegantere Variante wählen und gleich die Formeln ineinander einsetzen:

    $Z= 2 \cdot \pi \cdot f\cdot L= 2 \cdot \pi \cdot 50\,Hz \cdot 32\,mH=10053 \, m\Omega=10\, \Omega$.

  • Tipps

    Wie ist das Verhältnis zwischen Strom und Spannung beim Kondensator?

    Lösung

    Dieser Spruch ist besonders gut zu merken, wenn du die Enden betonst: Im KondensatOR eilt der Strom vOR.

  • Tipps

    Wie verhält sich die Spannung in einer Reihenschaltung aus Widerständen?

    Versuche erst die einfachste Schaltung zuzuordnen.

    Man könnte die Filter auch anders aufbauen.

    Lösung

    Hoch-, Tief- und Bandpässe finden in der Tontechnik viel Verwendung. Diese Schaltungen dienen dazu, verschiedene ungewollte Frequenzbereiche herauszufiltern oder genau andersherum, nur ganz bestimmte Frequenzen zu erhalten.

    Du siehst oben Beispiele dafür, wie solche Schaltungen aussehen könnten. In der Regel werden jedoch keine Spulen verwendet sondern meist nur Kondensatoren.

    Hast du eine Idee, wie die Schaltungen dann aussehen müssten?

30 Tage kostenlos testen
Mit Spaß Noten verbessern
und vollen Zugriff erhalten auf

9.360

sofaheld-Level

6.600

vorgefertigte
Vokabeln

8.211

Lernvideos

38.688

Übungen

33.496

Arbeitsblätter

24h

Hilfe von Lehrkräften

laufender Yeti

Inhalte für alle Fächer und Klassenstufen.
Von Expert*innen erstellt und angepasst an die Lehrpläne der Bundesländer.

30 Tage kostenlos testen

Testphase jederzeit online beenden