Leistung im Wechselstromkreis

in nur 12 Minuten? Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
-
5 Minuten verstehen
Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.
92%der Schüler*innen hilft sofatutor beim selbstständigen Lernen. -
5 Minuten üben
Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.
93%der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert. -
2 Minuten Fragen stellen
Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.
94%der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.

Wechselstrom

Effektivwert von Wechselstrom und Wechselspannung

Ohmscher Widerstand im Wechselstromkreis

Kondensator und kapazitiver Widerstand im Wechselstromkreis

Spule und induktiver Widerstand im Wechselstromkreis

Wechselstromwiderstand

Leistung im Wechselstromkreis

Reihen- und Parallelschaltungen im Wechselstromkreis

Parallelschaltung von Spule, Kondensator und Ohm'schen Widerstand
Leistung im Wechselstromkreis Übung
-
Gib an, was die Wirkleistung ist.
TippsEin Beobachter kann die Wirkleistung wahrnehmen.
Blindleistung gibt an, dass diese Leistung von Messgeräten nicht erfasst wird.
LösungDie Wirkleistung ist die Leistung, die im Wechselstromkreis direkt umgesetzt wird.
Zum besseren Verständnis formen wir etwas um: Die umgesetzte Wirkleistung zeigt sich dem Beobachter direkt.
Damit ist schon klar, das Blindleistung und Wirkleistung zwei unterschiedliche Dinge sind. Die Blindleistung hat die Eigenschaft, dass sie sich nicht auf dem Messgerät zeigt. Die Wirkleistung hingegen ist die Leistung, mit der eine Glühbirne leuchtet oder ein Elektroofen heizt. Diese gibt die Leistung an, die für den vorhergesehen Zweck zur Verfügung steht, sozusagen die Leistung nach Abzug aller Verluste.
Wie du dir sicher denken kannst, ist die Wirkleistung die maßgebliche Größe bei der Installation von Elektronik, da diese festlegt, wie viel Leistung vom Benutzer genutzt werden kann.
-
Erkläre den Begriff Blindleistung.
TippsWir können Blindleistung auch als pendelnde Energie verstehen.
Messgeräte sind blind für diese Leistung.
LösungDie Blindleistung bezeichnet diejenige Leistung im Wechselstromkreis, die von einem Messgerät nicht wahrgenommen wird. Da das Gerät gewissermaßen blind für diesen Anteil der Leistung ist, spricht man von Blindleistung. Diese tritt sowohl bei einem kapazitiven, als auch bei einem induktiven Widerstand auf.
Die Ursache besteht in der Zusammensetzung der Leistung: Über eine Periode gleicht sich der positive und negative Anteil der momentanen Leistung aus, da beide genau gleich groß sind. Bildet man den Mittelwert, so ergibt sich $0$. Genau diesen Mittelwert misst das Messgerät. Obwohl also eine positive beziehungsweise negative Leistung innerhalb einer halben Periode auftritt, zeigt das Gerät null an.
Wir können die Blindleistung somit als eine pendelnde Energie verstehen, die das Stromnetz belastet.
-
Berechne die Wirkleistung.
Tipps$1\cdot T = 360°$
$T = 360° \to \frac{T}{8} = \frac{360°}{8} = 45°$
$P_w = U_{eff} \cdot I_{eff} \cdot \cos(\phi)$
LösungUm die Wirkleistung zu berechnen, behelfen wir uns der angezeigten Formel. Hierin ist $P_w$ die Wirkleistung, $U_{eff}$ die effektive Spannung, $I_{eff}$ die effektive Stromstärke und $\phi$ die Phasenverschiebung.
Die Verschiebung ist hier als Anteil der gesamten Umlaufdauer gegeben. Wir müssen nun zunächst in einen Phasenwinkel umrechen. Es gilt $T = 360° \to \frac{T}{8} = \frac{360°}{8} = 45°$.
Setzen wir nun in $P_w$ ein. $P_w = 2.000 V \cdot 40 A \cdot \cos{45°} = 56.568,54 W = 56,59 kW$.
Die Wirkleistung beträgt hier etwa $56,59 kW$.
-
Berechne die effektiven Stromstärken und die Blindleistungen.
Tipps$U_{eff} = R \cdot I_{eff}$
$P_w = U_{eff} \cdot I_{eff} \cdot \cos(\Phi) $
$P_b = U_{eff} \cdot I_{eff} \cdot \sin(\Phi) $
LösungIn dieser Aufgabe unterscheiden wir zwischen der Wirkleistung $P_w$ und der Blindleistung $P_b$. Die weiteren Betrachtungen gelten für einen beliebigen Widerstand im Wechselstromkreis mit Phasenverschiebung $\Phi$.
Beginnen wollen wir mit den Überschneidungen: Beide Leistungen hängen ab von der effektiven Spannung $U_{eff}$ und der effektiven Stromstärke $I_{eff}$. Der Zusammenhang zwischen den effektiven Größen von Strom und Spannung ist über den Widerstand geregelt. Es gilt $U_{eff} = R \cdot I_{eff}$.
Der Unterschied zwischen diesen beiden Leistungen äußert sich durch die Phasenverschiebung $\phi$. Für die Wirkleistung wird $ \cos(\Phi)$ und für die Blindleistung $\sin(\Phi)$ benötigt.
Somit ergeben sich zwei Formeln zur Berechnung: $P_w = U_{eff} \cdot I_{eff} \cdot \cos(\Phi) $ und $P_b = U_{eff} \cdot I_{eff} \cdot \sin(\Phi) $.
Betrachten wir ein Beispiel: Es sei $U_eff = 21V$, $I_eff = 0,7A$ und $\Phi = 30$. Gesucht ist die Blindleistung $P_b$. Es gilt also die Formel: $P_b = U_{eff} \cdot I_{eff} \cdot \sin(\Phi) $.
Einsetzen liefert nun $P_b = 21V \cdot 0,7A \cdot \sin(30) = 7,35 W $. Bei gegebenen Parametern tritt also eine Blindleistung von $P_b = 7,35 W$ auf.
-
Zeige die richtige Formel zur Berechnung der Blindleistung.
Tipps$U_{eff} = R \cdot I_{eff}$
$\frac{U_{eff}^2}{R} = U_{eff} \cdot I_{eff}$
LösungDie Wirkleistung setzt sich aus Anteilen der effektiven Stromstärke und Spannung in Abhängigkeit von der Phasenverschiebung zusammen.
Unter Umständen muss die Stromstärke dabei aus der Spannung und einem bekannten Widerstand abgeleitet werden ( $U_{eff} = I_{eff} \cdot R$).
Die einfachste Form der Formel für den Blindwiderstand lautet: $ P_b = U_{eff} \cdot I_{eff} \cdot \sin(\phi)$. Wie du sicher schon vermutest, ist hier $U_{eff}$ die Spannung, $I_{eff}$ die effektive Stromstärke und $\phi$ die Phasenverschiebung.
Setzen wir nun $U_{eff} = R \cdot I_{eff} \to I_{eff} = \frac{U_{eff}}{R}$ in die Gleichung für $P_b$ ein, so erhalten wir: $P_b = P_w = \frac{U_{eff}^2}{R} \cdot \sin(\phi)$ und damit eine weitere mögliche und richtige Formel zur Berechnung der Blindleistung.
Beachte, dass zur Berechnung der Blindleistung stets der $\sin$ benötigt wird. Verwendest du stattdessen den $\cos$, so errechnest du die Wirkleistung anstelle der Blindleistung.
-
Bestimme die stromtechnischen Größen.
Tipps$ R = \frac{U}{I}$
$P_w = U_{eff} \cdot I_{eff} \cdot \cos(\Phi) $
$P_b = U_{eff} \cdot I_{eff} \cdot \sin(\Phi) $
LösungIn dieser Aufgabe unterscheiden wir wieder zwischen der Wirkleistung $P_w$ und der Blindleistung $P_b$. Die weiteren Betrachtungen gelten für einen beliebigen Widerstand im Wechselstromkreis mit Phasenverschiebung $\phi$ in $°$.
Beginnen wollen wir mit nun den Überschneidungen: Beide Leistungen hängen ab von der effektiven Spannung $U_{eff}$ und der effektiven Stromstärke $I_{eff}$. Der Zusammenhang zwischen den effektiven Größen von Strom und Spannung ist über den Widerstand geregelt. Es gilt $U_{eff} = R \cdot I_{eff}$. Der Unterschied zwischen diesen beiden Leistungen äußert sich durch die Phasenverschiebung $\Phi$. Für die Wirkleistung wird $\cos(\Phi)$ und für die Blindleistung $\sin(\Phi)$ benötigt.
Somit ergeben sich drei Formeln zur Berechnung:
$P_w = U_{eff} \cdot I_{eff} \cdot \cos(\Phi) $, $P_b = U_{eff} \cdot I_{eff} \cdot \sin(\Phi) $ und $ R = \frac{U}{I}$.
Betrachten wir ein Beispiel :
Für $U_{eff} = 1,85 V$ $I_{eff} = 1,22 A$ $\alpha = 44,7°$ ergibt sich die Wirkleistung $P_w = 1,85 V \cdot 1,22 A \cdot \cos(44,7°) = 1,60 W$. Die Blindleistung ergibt sich zu $P_b = 1,85 V \cdot 1,22 A \cdot \sin(44,7°) = 1,59 W$. In einem dritten Schritt ermitteln wir den Widerstand nach $ R = \frac{U}{I} = \frac{1,85 V}{1,22 A} = 1,52 \Omega$.
Mit diesem Schema kannst du nun auch die übrigen Aufgaben leicht lösen.
9.369
sofaheld-Level
6.600
vorgefertigte
Vokabeln
8.224
Lernvideos
38.691
Übungen
33.496
Arbeitsblätter
24h
Hilfe von Lehrkräften

Inhalte für alle Fächer und Klassenstufen.
Von Expert*innen erstellt und angepasst an die Lehrpläne der Bundesländer.
Testphase jederzeit online beenden
Beliebteste Themen in Physik
- Temperatur
- Schallgeschwindigkeit
- Dichte
- Drehmoment
- Transistor
- Lichtgeschwindigkeit
- Elektrische Schaltungen – Übungen
- Galileo Galilei
- Rollen- Und Flaschenzüge Physik
- Radioaktivität
- Aufgaben zur Durchschnittsgeschwindigkeit
- Lorentzkraft
- Beschleunigung
- Gravitation
- Ebbe und Flut
- Hookesches Gesetz Und Federkraft
- Elektrische Stromstärke
- Elektrischer Strom Wirkung
- Reihenschaltung
- Ohmsches Gesetz
- Freier Fall
- Kernkraftwerk
- Was sind Atome
- Aggregatzustände
- Infrarot, Uv-Strahlung, Infrarot Uv Unterschied
- Isotope, Nuklide, Kernkräfte
- Transformator
- Lichtjahr
- Si-Einheiten
- Fata Morgana
- Gammastrahlung, Alphastrahlung, Betastrahlung
- Kohärenz Physik
- Mechanische Arbeit
- Schall
- Schall
- Elektrische Leistung
- Dichte Luft
- Ottomotor Aufbau
- Kernfusion
- Trägheitsmoment
- Heliozentrisches Weltbild
- Energieerhaltungssatz Fadenpendel
- Linsen Physik
- Ortsfaktor
- Interferenz
- Diode und Photodiode
- Wärmeströmung (Konvektion)
- Schwarzes Loch
- Frequenz Wellenlänge
- Elektrische Energie