Über 1,6 Millionen Schüler*innen nutzen sofatutor!
  • 93%

    haben mit sofatutor ihre Noten in mindestens einem Fach verbessert

  • 94%

    verstehen den Schulstoff mit sofatutor besser

  • 92%

    können sich mit sofatutor besser auf Schularbeiten vorbereiten

Ohmscher Widerstand im Wechselstromkreis

Wie verhält sich ein ohmscher Widerstand im Wechselstromkreis? Erfahre, wie elektrische Spannung und Strom gemäß dem ohmschen Gesetz zusammenhängen und warum der Widerstand als Wirkwiderstand bezeichnet wird. Finde heraus, dass sich ein Widerstand im Wechselstromkreis ähnlich wie im Gleichstromkreis verhält. Interessiert? Das und vieles mehr kannst du im folgenden Text erfahren!

Du willst ganz einfach ein neues Thema lernen
in nur 12 Minuten?
Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
  • Das Mädchen lernt 5 Minuten mit dem Computer 5 Minuten verstehen

    Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.

    92%
    der Schüler*innen hilft sofatutor beim selbstständigen Lernen.
  • Das Mädchen übt 5 Minuten auf dem Tablet 5 Minuten üben

    Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.

    93%
    der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert.
  • Das Mädchen stellt fragen und nutzt dafür ein Tablet 2 Minuten Fragen stellen

    Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.

    94%
    der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.
Bewertung

Ø 4.8 / 5 Bewertungen
Die Autor*innen
Avatar
Wolfgang Tews
Ohmscher Widerstand im Wechselstromkreis
lernst du in der 11. Klasse - 12. Klasse - 13. Klasse

Ohmscher Widerstand im Wechselstromkreis Übung

Du möchtest dein gelerntes Wissen anwenden? Mit den Aufgaben zum Video Ohmscher Widerstand im Wechselstromkreis kannst du es wiederholen und üben.
  • Gib die Formel zur Berechnung von Strom und Spannung im Wechselstromkreis an.

    Tipps

    Strom und Spannung sind im Wechselstromkreis in Phase.

    Der Verlauf von $U$ und $I$ orientiert sich an einer maximalen Größe von Strom und Spannung.

    $U$ und $I$ schwanken immer zwischen einem negativen und positiven Maximalwert.

    Lösung

    Um den Wert der Spannung $U$ oder des Stromes $I$ zu einem bestimmten Zeitpunkt angeben zu können, nutzen wir die gezeigten Formeln.

    Wir beginnen mit $I(t)$. Der Maximalwert des Stromes $I_0$ wird zyklisch und in Abhängigkeit vom $\sin$ der vergangenen Zeit $t$ und der Kreisfrequenz $\omega$ erreicht.

    Achte bei der Berechnung unbedingt auf die Einheiten von $\omega$ und $t$. Gib die Zeit dazu am besten in $s$ und die Kreisfrequenz in $\frac{1}{s}$ an.

    Die Funktion, die die Spannung $U$ über die Zeit beschreibt, sieht der Funktion $I(t)$ sehr ähnlich. Genau genommen, tauschen wir lediglich den Wert der maximalen Stromstärke gegen den Wert der maximalen Spannung aus und erhalten so die Spannung im Wechselstromkreis.

    Der Verlauf der Spannung hängt also ebenfalls nur von dem $\sin$ von Kreisfrequenz und Zeit ab, sodass wir feststellen können: Strom und Spannung sind im Wechselstromkreis in Phase.

  • Gib an, was der Effektivwert einer Wechselspannung ist.

    Tipps

    Bei gleicher Spannung kann ein Gleichstromkreis mehr Leistung erzeugen als ein Wechselstromkreis.

    Die Idee des Effektivwertes ist es, die Leistung im Wechselstromkreis mit der Leistung im Gleichstromkreis vergleichbar zu machen.

    Lösung

    Was der Effektivwert ist, können wir gut am Beispiel einer Glühbirne erklären.

    Der Effektivwert einer Wechselspannung ist der Spannungswert, der beispielsweise bei einer Glühlampe dieselbe Helligkeit erzeugt, wie eine Gleichspannung.

    Wir müssen dabei beachten, dass der Wert der Spannung und der Wert des Stromes im Wechselstromkreis zeitabhängige Größen sind. Im Gleichstromkreis sind diese Größen konstant.

    So ergibt sich für die Leistung im Gleichstromkreis die Formel $ P = U \cdot I = \frac {U^2}{R}$. Damit kann die Leistung als konstante Größe direkt aus der Spannung und dem Strom oder der Spannung und dem Ohm'schen Widerstand bestimmt werden.

    Im Wechselstromkreis sieht das etwas anders aus. Hier verändern sich $U$ und $I$ in Abhängigkeit von $t$ und in Phase zueinander. Wenn die maximale Stromstärke und die maximale Spannung auftreten, liegt auch ein Maximum in der Leistung vor.

    Um jedoch die Helligkeit einer Glühlampe, die mit Wechselstrom versorgt wird, mit der Helligkeit einer Glühlampe zu vergleichen, die mit Gleichstrom versorgt wird, muss neben der Leistung auch die Zeit $T$ berücksichtigt werden, über die diese Leistung abgerufen werden kann. Wir müssen also die Integrale der Leistung über einer bestimmten Zeitspanne $t$ vergleichen.

    Der Verlauf bei der Gleichspannung ist, wie schon beschrieben, konstant. Die Wechselspannung hingegen verläuft immer zwischen dem Wert $P = 0$ und $P = max$, sodass Leerräume entstehen.

    Bei gleicher maximaler Spannung kann eine Gleichspannung also mehr Energie ($ E = P \cdot t$ ) liefern und eine Lampe leuchtet heller. Der Effektivwert gibt nun an, wie groß die äquivalente Gleichspannung sein muss, damit derselbe Energiebetrag an einen Verbraucher (Lampe) abgegeben werden kann wie ein vergleichbarer Wechselstromkreis.

  • Berechne den Effektivwert der Spannungen im Wechselstromkreis.

    Tipps

    Der Effektivwert einer Wechselspannung ist der Spannungswert, der z.B. bei einer Glühlampe dieselbe Helligkeit erzeugt wie eine Gleichspannung.

    $ U_0 = \sqrt{2} \cdot U_{eff}$

    $U_{eff} = \frac{U_0}{\sqrt{2}}$

    Lösung

    Der Effektivwert einer Wechselspannung ist der Spannungswert, der z.B. bei einer Glühlampe dieselbe Helligkeit erzeugt wie eine Gleichspannung.

    Um zu bestimmen, bei welchem Spannungswert der geforderte Zusammenhang auftritt, müssen wir die Formel $U_{eff} = \frac{ U_0}{ \sqrt{2}}$ verwenden, wenn die effektive Spannung gesucht ist, und $ U_0 = \sqrt{2} \cdot U_{eff}$, wenn die maximale Spannung gesucht ist.

    Schauen wir uns ein Beispiel an: Gegeben sei die Spannung $U_0 = 12 V$. Gesucht ist die zugehörige effektive Spannung $E_{eff}$. Wir müssen hier also die Formel $U_{eff} = \frac{ U_0}{ \sqrt{2}}$ verwenden. Einsetzen liefert nun $U_{eff} = \frac{ 12V}{ \sqrt{2}} = 8,49 V$.

    Eine Wechselspannung kann eine Glühbirne also dann genauso hell leuchten lassen wie eine Gleichspannung, wenn der maximale Wert der Wechselspannung $ U_0 = 12V$ ist und die Gleichspannung $ U_{eff} = 8,49 V$ beträgt.

    Nach diesem Vorbild kannst du die übrigen Aufgaben nun sicher lösen.

  • Bestimme die Maximalwerte für Strom und Spannung im Wechselstromkreis.

    Tipps

    $U(t) = U_0 \cdot \sin(\omega t)$

    Rechne $t$ in Sekunden.

    $I_0 = \frac{I(t)}{\sin(\omega t)}$

    Lösung

    Um die maximalen Werte der Spannung oder der Stromstärke zu bestimmen, müssen wir nach $U_0$ beziehungsweise $I_0$ umformen.

    Somit erhalten wir $ U_0 = \frac{U(t)}{\sin(\omega t)}$.

    Aus dem momentanen Wert für die Spannung $U(t)$ und dem $\sin$ von Kreisfrequenz $\omega$ und Zeitpunkt $t$ können wir so die Amplitude der Schwingung bestimmen.

    Schauen wir uns ein Beispiel an: Gegeben sind $I(t) = -1,23 A$, $\omega =6911,5 s^{-1}$ und $t= 8 \cdot 10^{-4} s$.

    Einsetzen liefert nun $ U_0 = \frac{U(t)}{\sin(\omega t)} = \frac{-1,23 A}{\sin(6911,5 s^{-1} 8 \cdot 10^{-4} s)} = 1,8 A$.

    Analog kannst du nun die weiteren Aufgaben sicher leicht lösen. Viel Erfolg dabei !

  • Gib die vorgegebenen Punkte im Zeigerdiagramm an.

    Tipps

    Der Wert von Spannung und Stromstärke ist definiert durch den Abstand der Zeigerspitze zur $t$-Achse.

    Weist der Zeiger in Richtung (oder genau entgegengesetzt) der $t$-Achse, so nehmen Spannung oder Stromstärke den Wert $0$ an.

    Lösung

    Der Verlauf einer Schwingung kann auch mit dem Zeigerdiagramm dargestellt werden.

    Wir nehmen an, dass die Zeiger sich entgegen dem Uhrzeigersinn im Kreis bewegen. Der Abstand der Zeigerspitze zur waagerechten $t$-Achse gibt dabei stets den Wert der Spannung $U$ oder den Wert der Stromstärke $I$ an.

    In dieser Grafik ist die Spannung in orange und die Stromstärke in grün dargestellt.

    Die maximalen Werte treten dabei immer dann auf, wenn die Zeiger entweder senkrecht nach oben oder senkrecht nach unten zeigen. An diesen Stellen treten die positive und negativ Amplitude auf.

    Sind die Zeiger in Richtung der waagerechten $t$-Achse gerichtet, ist der Höhenunterschied zwischen Zeigerspitze und Achse $0$, sodass hier die Werte für Spannung und Stromstärke $ I $ und $ U = 0 $ betragen.

    Zwischen diesen beiden Extremfällen tritt eine Spannung beziehungsweise ein Strom auf, der in Abhängigkeit von $t$ und dem Phasenwinkel angegeben werden kann. Hier bezeichnet man die Spannung mit $U(t)$ und die Stromstärke mit $I(t)$.

  • Berechne die Leistung $P$ im Wechselstromkreis.

    Tipps

    Rechne in den Grundeinheiten.

    $I_0$ ist in Ampere, $U_0$ in Volt, $t$ in Sekunden und $\omega in $\frac{1}{s}$ anzugeben.

    $P(t) = U_0 \cdot I_0 \cdot sin^2(\omega t)$

    Lösung

    Um die Leistung zu bestimmen, die zu einem Zeitpunkt $t$ in einem Wechselstromkreis abgenommen werden kann, nutzen wir die gezeigte Formel. Darin ist $U_0$ der maximale Wert der Spannung, $I_0$ der maximale Wert der Stromstärke, $t$ die Zeit und $\omega$ die Kreisfrequenz. Achte bei der Berechnung auf die Einheiten! $I_0$ ist in Ampere, $U_0$ in Volt, $t$ in Sekunden und $\omega$ in $\frac{1}{s}$ anzugeben.

    Betrachten wir ein Beispiel. Für $I_0 = 0,4 A$, $U_0 = 12 V$, $t = 5 s$, $\omega = 376991,12 s^{-1}$ ergibt sich:

    $P(t) = U_0 \cdot I_0 \cdot sin^2(\omega t) \to P(5) = 12 V \cdot 0,4 A \cdot sin^2(376991,12 s^{-1} \cdot 5s) = 2,95 \cdot 10^{-4} W$.

    Bei gegebenen Größen leistet der Stromkreis zum Zeitpunkt $t = 5s$ also etwa $300 \mu W$.