Über 1,6 Millionen Schüler*innen nutzen sofatutor!
  • 93%

    haben mit sofatutor ihre Noten in mindestens einem Fach verbessert

  • 94%

    verstehen den Schulstoff mit sofatutor besser

  • 92%

    können sich mit sofatutor besser auf Schularbeiten vorbereiten

Massenspektrometer

Entdecke das Massenspektrometer! Erforsche seinen Aufbau, seine Funktionsweise und Einsatzmöglichkeiten. Lerne, wie es Atome und Moleküle nach ihrer Größe sortiert und dabei auf elektrischen und magnetischen Feldern basiert. Neugierig geworden? Vertiefe dein Wissen in der faszinierenden Welt der Spektrometrie!

Video abspielen
Du willst ganz einfach ein neues Thema lernen
in nur 12 Minuten?
Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
  • Das Mädchen lernt 5 Minuten mit dem Computer 5 Minuten verstehen

    Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.

    92%
    der Schüler*innen hilft sofatutor beim selbstständigen Lernen.
  • Das Mädchen übt 5 Minuten auf dem Tablet 5 Minuten üben

    Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.

    93%
    der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert.
  • Das Mädchen stellt fragen und nutzt dafür ein Tablet 2 Minuten Fragen stellen

    Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.

    94%
    der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.
Teste dein Wissen zum Thema Massenspektrometer

Was ist ein Massenspektrometer?**

1/2
Bewertung

Ø 3.7 / 19 Bewertungen
Die Autor*innen
Avatar
Robert Worm
Massenspektrometer
lernst du in der 11. Klasse - 12. Klasse - 13. Klasse

Massenspektrometer Übung

Du möchtest dein gelerntes Wissen anwenden? Mit den Aufgaben zum Video Massenspektrometer kannst du es wiederholen und üben.
  • Gib an, welche Aussagen über das Massenspektrometer zutreffen.

    Tipps

    Das Massenspektrometer besteht unter anderem aus einem Geschwindigkeitsfilter.

    Nach dem Geschwindigkeitsfilter findet sich ein evakuiertes Vakuumrohr.

    Lösung

    Das Massenspektrometer beruht auf einigen wenigen physikalischen Grundannahmen.

    Zunächst müssen die betrachteten Teilchen unbedingt elektrisch geladen sein. Es kommen daher Elektronen, Protonen oder Ionen als Probekörper infrage. Neutronen oder nach außen elektrisch neutrale Elemente oder Moleküle können nicht verwendet werden. Das liegt daran, dass auf die Teilchen die Lorentzkraft wirken soll, um eine Kreisbewegung zu erzeugen und so anhand des Radius eine Aussage über die Masse machen zu können. Es wirkt also eine Kraft im Magnetfeld.

    Aufgrund dieser Kraft werden die geladenen Teilchen auf eine Kreisbahn bewegt und letztendlich auf eine Photoplatte geschossen. Je nach Auftreffpunkt kann man nun bestimmen, wie schwer das auftreffende Teilchen sein musste.

    Wichtig ist dabei, dass im Inneren des Massenspektrometers ein Vakuum herrscht. Andernfalls treffen die beschleunigten Ionen, schon bevor sie auf die Photoplatte treffen, auf Gasmolekühle, sodass keine Messung mehr möglich wäre.

  • Bezeichne den Aufbau des Massenspektrometers.

    Tipps

    Unter Einwirkung der Lorentzkraft verlaufen die Ionen auf einer Kreisbahn.

    Die Lorentzkraft wirkt auf bewegte Ladungsträger.

    Den Kondensator mit angelegtem Magnetfeld können nur Ionen mit bestimmter Geschwindigkeit passieren.

    Die Messung muss im Vakuum stattfinden.

    Lösung

    Das Massenspektrometer besteht im Wesentlichen aus vier Bauteilen, die innerhalb eines evakuierten Raumes angebracht sind.

    Das erste Bauteil ist eine Ionenquelle. Diese erzeugt freie Ionen, indem etwa eine Heizspule unter Spannung gesetzt wird. Diese freien, geladenen Teichen werden beschleunigt und durch einen Geschwindigkeitsfilter gelenkt. Dieser Filter ist das zweite Bauteil. Diesen können nur Ionen bestimmter Geschwindigkeit passieren. Aufgrund des elektrischen Feldes werden zu langsame Ionen zu den Platten des Kondensators abgelenkt. Ionen, die zu schnell sind, werden aufgrund der Lorentzkraft ausgesiebt.

    Die Ionen, welche den Filter passieren, gelangen durch eine Blende in den zweiten Teil des Massenspektrometers. Hier sind die Ionen wieder einem magnetischen Feld ausgesetzt, sozusagen dem dritten Bauteil des Messgerätes. Auch hier wirkt die Lorentzkraft und die Ionen werden auf eine Kreisbahn gelenkt. Der Radius der Kreisbahn ist dabei äquivalent zur Masse der Ionen. Auf einer Photoplatte, dem vierten Bauteil, werden die Ionen detektiert. So kann der Radius der Kreisbewegung genau ermittelt und schlussendlich mit dem Ansatz $m = \frac{q \cdot B' \cdot r}{v} $ bestimmt werden.

    Die Messung muss dabei im Vakuum stattfinden. Andernfalls würden die Ionen mit den Gasmolekülen stoßen und ihre Bewegungsenergie verlieren. Eine zuverlässige Messung wäre nicht weiter möglich.

  • Berechne die Geschwindigkeit der Ionen hinter dem Geschwindigkeitsfilter.

    Tipps

    Rechne in den Grundeinheiten.

    Es soll $ F_E = F_L$ sein.

    Es gilt $ q \cdot E = q \cdot v \cdot B$.

    Lösung

    In einem Geschwindigkeitsfilter steht ein Magnetfeld der Stärke $B$ senkrecht auf dem elektrischen Feld $E$ eines Kondensators.

    Bringt man nun eine beschleunigte Ladung senkrecht zu $B$ und $E$ in den Geschwindigkeitsfilter ein, so wirken auf den Probekörper zum einen die Kraft $ F_E = q \cdot E $ aus der elektrischen Anziehung des elektrischen Feldes sowie die Lorentzkraft $ F_L = q \cdot v \cdot B$.

    Nur, wenn sich die beiden Kräfte im Gleichgewicht befinden, kann ein Teilchen den Filter passieren.

    Setzen wir also $ F_E = F_L$. Damit ist $ q \cdot E = q \cdot v \cdot B$. Nun kürzen wir das $q$ weg und erhalten : $ E = v \cdot B $. Umgestellt nach $v$ ergibt sich nun $ v = \frac{E}{B} $.

    Die Filterwirkung hängt also nur von der Stärke des elektrischen Feldes und der Magnetfeldstärke ab.

    Für einen Filter mit : $ E =1,45~\frac{\text{kV}}{\text{m}} $ und $B = 278~\text{mT}$ ergibt sich $ v = \frac{E}{B} = \frac{1{,}45~\frac{\text{kV}}{\text{m}}}{278~\text{mT}} = \frac{1450~\frac{\text{V}}{\text{m}}}{0{,}278~\text{T}} =5\,215{,}83~\frac{\text{m}}{\text{s}}$.

    Achte bei der Berechnung unbedingt darauf, in den Grundeinheiten zu rechnen.

  • Berechne die Massen.

    Tipps

    $ v = \frac{E}{B} $

    Rechne in den Grundeinheiten.

    $m = \frac{q \cdot r \cdot B' \cdot B}{E}$

    Lösung

    Um die Masse eines Teilchens zu berechnen, welches auf die Photoplatte des Massenspektrometers aufgetroffen ist, müssen wir zunächst einmal dessen Ladung und Geschwindigkeit kennen. Zudem müssen wir das an der Vakuumröhre angelegte Magnetfeld kennen sowie den Radius der Kreisbewegung.

    Sind diese Größen bekannt, so können wir die Formel $m = \frac{q \cdot r \cdot B' \cdot B}{E}$ anwenden.

    Doch wo finden wir hier die Geschwindigkeit? Im Massenspektrometer ist ein sogenannter Geschwindigkeitsfilter integriert. Dieser besteht aus einem Kondensator, auf den ein ausgerichtetes Magnetfeld wirkt. Tritt nun ein geladenes Teilchen hindurch, wird dieses entweder vom magnetischen oder elektrischen Feld abgelenkt oder diese beiden Wirkungen heben sich auf und das Teilchen passiert den Filter. So kann sichergestellt werden, dass nur Teilchen mit einer bestimmten Geschwindigkeit in die Vakuumröhre des Massenspektrometers eintreten. Es gilt der Zusammenhang $v = \frac{E}{B}$.

    Die Teilchen, die den Geschwindigkeitsfilter passiert haben, sind nun also alle gleich schnell und werden in die Vakuumröhre eingeleitet. Hier werden sie nun durch das Magnetfeld $B'$ ausgerichtet. Dieses ist nicht gleich dem Magnetfeld im Geschwindigkeitsfilter. Als Folge der Lorentzkraft werden die geladenen Teilchen auf eine Kreisbahn gelenkt und treffen auf einer Photoplatte auf. Anhand des Auftreffpunkts kann nun der Radius der Kreisbewegung $r$ abgemessen werden. Nun kann man alle Größen einsetzen und erhält als Ergebnis die Masse des untersuchten Teilchens.

    Betrachten wir ein Beispiel: Ein Ion mit doppelter Einheitsladung $e$ tritt einen Geschwindigkeitsfilter mit $E = 1{,}1~\frac{\text{kV}}{\text{m}}$ und $B = 5~\text{mT}$. In der anschließenden Vakuumröhre herrscht ein Magnetfeld von $B' = 32{,}2~\text{T}$. Der Radius der Kreisbahn wird zu $ r = 7{,}7~\text{mm}$ bestimmt.

    Wir setzen in $m = \frac{q \cdot r \cdot B' \cdot B}{E}$ ein und erhalten so $m = \frac{3{,}2 \cdot 10^{-19} \cdot 0{,}0077~\text{mm} \cdot 32{,}2~\text{T} \cdot 0{,}005~\text{T}}{1\,100~\frac{\text{V}}{\text{m}}}$.

    Als Ergebnis erhalten wir nun $m = 3{,}61 \cdot 10^{-25}~\text{kg}$.

  • Gib die Funktion des Massenspektrometers an.

    Tipps

    Es wirkt die Lorentzkraft.

    Die Lorentzkraft wirkt auf bewegte Ladungsträger.

    Lösung

    Das Massenspektrometer ist, wie der Name schon vermuten lässt, ein Messgerät zur Bestimmung der Masse von Atomen und Molekülen.

    Mit Hilfe eines Geschwindigkeitsfilters werden nur Ionen, die sich mit einer bestimmen Geschwindigkeit bewegen, in eine Vakuumröhre geleitet. Hier sind sie nun ausschließlich einem magnetischen Feld ausgesetzt und werden aufgrund der Lorentzkraft auf eine Kreisbahn gelenkt. Diese Kraft wirkt ausschließlich auf geladene Teilchen. Neutronen oder neutrale Teilchen werden also nicht beeinflusst und sind daher auch nicht messbar. Je nachdem, wie stark das Magnetfeld, wie groß die Masse des Ions und wie schnell dieses ist, trifft es an einer bestimmten Stelle auf einer Photoplatte auf. Man kann über den Radius der Kreisbewegung bestimmen, welche Masse das Ion haben muss.

    So können auch die Massen sehr leichter Teilchen bestimmt werden.

  • Bestimme die fehlenden Begriffe.

    Tipps

    Isotope sind meist nur wenige Neutronenmassen leichter oder schwerer als ihre elementaren Atome.

    Der Radius der Ionenbewegung verhält sich proportional zur Ionenmasse.

    Im Geschwindigkeitsfilter gilt : $v = \frac{E}{B}$.

    Lösung

    Um die Aussagen zu überprüfen, betrachten wir zunächst den Geschwindigkeitsfilter. Nur Ionen mit einer bestimmten Geschwindigkeit können diesen passieren. Mit dem Ansatz <nobr>$v = \frac{E}{B}$</nobr> kann die Durchtrittsgeschwindigkeit ermittelt werden. Für den Fall, das $E$ und $B$ den gleichen Betrag aufweisen, ergibt sich dann mit <nobr>$E = B$</nobr> in <nobr>$v = \frac{E}{B} = \frac{E}{E} = 1~\frac{\text{m}}{\text{s}}$.</nobr> Für einen Geschwindigkeitsfilter mit <nobr>$E = 3{,}9~\frac{\text{kv}}{\text{m}}$</nobr> und <nobr>$B = 1{,}1~\text{T}$</nobr> ergibt sich aus dem gleichen Ansatz <nobr>$v = \frac{3,9~\frac{\text{kv}}{\text{m}}}{1{,}1~\text{T}} = 3\,545{,}45~\frac{\text{m}}{\text{s}}$.</nobr>

    Da die Masse eines Teilchens direkt proportional zum Radius der Ionenbahn ist, treffen schwere Teilchen weiter außen auf als leichtere. Das ist damit zu erklären, dass der Radius der Ionenbahn zunimmt und der Abstand zwischen Blende und Auftreffpunkt ebenfalls steigt.

    Haben Teilchen ähnliche Massen, wie es bei den Isotopen einer Atomart der Fall ist, treffen diese logischerweise nah beieinander auf der Photoplatte auf. Auch hier liegt die Proportionalität von Radius und Masse zugrunde. Isotope sind ja nur ein wenig leichter oder schwerer als ihre elementaren Ionen, denn der Gewichtsunterschied besteht meist in wenigen Neutronenmassen.

    Du siehst: Mit einigen simplen Ansätzen lassen sich auch relativ komplexe Fragestellungen zum Massenspektrometer leicht beantworten.

30 Tage kostenlos testen
Mit Spaß Noten verbessern
und vollen Zugriff erhalten auf

9.143

sofaheld-Level

6.601

vorgefertigte
Vokabeln

8.076

Lernvideos

37.159

Übungen

33.471

Arbeitsblätter

24h

Hilfe von Lehrkräften

laufender Yeti

Inhalte für alle Fächer und Klassenstufen.
Von Expert*innen erstellt und angepasst an die Lehrpläne der Bundesländer.

30 Tage kostenlos testen

Testphase jederzeit online beenden