Pommes der Pinguin hält einen großen gelben Stern in den Händen
Pommes der Pinguin hält einen großen gelben Stern in den Händen
30 Tage kostenlos testen
30 Tage kostenlos testen
Über 1,6 Millionen Schüler*innen nutzen sofatutor Über 1,6 Millionen Schüler*innen nutzen sofatutor
Lernpakete anzeigen
Lernpakete anzeigen
Lernpakete anzeigen

Logarithmen und Logarithmusgesetze

Wenn du eine Exponentialgleichung lösen möchtest, musst du logarithmieren.

Alle Klassen

Alle Themen in Logarithmen und Logarithmusgesetze

Themenübersicht in Logarithmen und Logarithmusgesetze

Was bedeutet logarithmieren?

Das Logarithmieren ist die Umkehraufgabe zum Potenzieren.

Es ist 25=22222=322^{5}=2\cdot 2\cdot 2\cdot 2\cdot 2=32.

Möchtest du nun umgekehrt wissen, für welchen Exponenten xx die Gleichung 2x=322^{x}=32 erfüllt ist, so musst du entweder wissen, dass 25=322^{5}=32 ist oder die Umkehraufgabe lösen.

Hier hilft der Logarithmus weiter.

Er beantwortet nämlich folgende Frage: „Mit welcher Zahl xx muss man die Zahl 22 potenzieren, damit der Potenzwert 3232 resultiert?“ Die Lösung der Gleichung 2x=322^{x}=32 ist gegeben durch x=log232x=\log_2{32}.

Allgemein können wir schreiben, dass die Gleichung ax=ba^{x}=b die Lösung x=logabx=\log_a{b} besitzt. Der Ausdruck logab\log_{a}b wird „Logarithmus zur Basis aa von bb“ genannt. Dabei muss die Basis eines Logarithmus positiv sein. Warum? Die Potenz einer positiven Zahl ist immer positiv ist.

Spezielle Logarithmen

Betrachten wir nun spezielle Basen aa für den Logarithmus loga\log_{a}:

  • Für a=10a=10 erhalten wir den dekadischen Logarithmus: log10=lg\log_{10}=\lg .
  • Für a=ea=e, also die Euler'sche Zahl, folgt der Logarithmus naturalis: loge=ln\log_e=\ln .
  • Für a=2a=2 erhalten wir den Logarithmus dualis: log2=ld\log_{2}= \text{ld}.

Die Logarithmusgesetze

In vielen verschiedenen Anwendungsaufgaben benötigst du Rechenregeln zum Rechnen mit Logarithmen. Diese sind durch die jeweiligen Logarithmusgesetze gegeben.

  1. Logarithmusgesetz: loga(uv)=loga(u)+loga(v)\log_{a}\left(u\cdot v\right)=\log_{a}\left(u\right)+\log_{a}\left(v\right)
  2. Logarithmusgesetz: loga(uv)=loga(u)loga(v)\log_{a}\left(\frac uv\right)=\log_{a}\left(u\right)-\log_{a}\left(v\right)
  3. Logarithmusgesetz: loga(ur)=rloga(u)\log_{a}\left(u^{r}\right)=r\cdot \log_{a}\left(u\right)