Über 1,6 Millionen Schüler*innen nutzen sofatutor!
  • 93%

    haben mit sofatutor ihre Noten in mindestens einem Fach verbessert

  • 94%

    verstehen den Schulstoff mit sofatutor besser

  • 92%

    können sich mit sofatutor besser auf Schularbeiten vorbereiten

Wurzeln im Nenner eines Bruchs beseitigen

Du willst ganz einfach ein neues Thema lernen
in nur 12 Minuten?
Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
  • Das Mädchen lernt 5 Minuten mit dem Computer 5 Minuten verstehen

    Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.

    92%
    der Schüler*innen hilft sofatutor beim selbstständigen Lernen.
  • Das Mädchen übt 5 Minuten auf dem Tablet 5 Minuten üben

    Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.

    93%
    der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert.
  • Das Mädchen stellt fragen und nutzt dafür ein Tablet 2 Minuten Fragen stellen

    Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.

    94%
    der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.
Bewertung

Ø 4.1 / 37 Bewertungen
Die Autor*innen
Avatar
Team Digital
Wurzeln im Nenner eines Bruchs beseitigen
lernst du in der 9. Klasse - 10. Klasse

Wurzeln im Nenner eines Bruchs beseitigen Übung

Du möchtest dein gelerntes Wissen anwenden? Mit den Aufgaben zum Video Wurzeln im Nenner eines Bruchs beseitigen kannst du es wiederholen und üben.
  • Bestimme die korrekten Aussagen zum Beseitigen von Wurzeln im Nenner eines Bruchs.

    Tipps

    Das ist eine Rechenregel für Wurzeln: $\sqrt{a} \cdot \sqrt{b}= \sqrt{a \cdot b}$.

    Beim Erweitern eines Bruchs verändert der Bruch seinen Wert nicht.

    Lösung

    Diese Aussagen sind falsch:

    „Das Ergebnis einer Rechnung sollte keine Wurzel im Zähler enthalten.“

    • Im Zähler eines Bruchs stören Wurzeln nicht besonders. Wichtig ist, dass sie nicht im Nenner stehen.
    „Beim Erweitern eines Bruchs subtrahierst du von Nenner und Zähler jeweils die gleiche Zahl.“

    • Beim Erweitern eines Bruchs multiplizierst du Nenner und Zähler eines Bruchs mit der gleichen Zahl. Der Bruch verändert dabei seinen Wert nicht.
    Diese Aussagen sind richtig:

    „Multiplizierst du zwei Wurzeln, kannst du die Zahlen unter den Wurzeln multiplizieren und unter eine gemeinsame Wurzel schreiben.“

    • Das ist eine Rechenregel für Wurzeln: $\sqrt{a} \cdot \sqrt{b}= \sqrt{a \cdot b}$.
    „Besteht der Nenner eines Bruchs aus einer Addition oder Subtraktion, welche eine Wurzel enthält, kannst du mit einem Term erweitern, der die Rechenoperation im Nenner umkehrt. Anschließend kannst du die dritte binomische Formel anwenden, um die Wurzel verschwinden zu lassen.“

    • Die dritte binomische Formel lautet: $(a-b) \cdot (a+b) = a^2-b^2$. Diese Formel kannst du beim Vereinfachen von Brüchen mit Wurzeln im Nenner verwenden. Beispiel:
    $~~~~~~\frac{3}{5-\sqrt{7}} \cdot \frac{5+\sqrt{7}}{5+\sqrt{7}} = \frac{3(5 + \sqrt{7})}{(5-\sqrt{7}) \cdot (5+\sqrt{7})} = \frac{15+3\sqrt{7}}{5^2 - (\sqrt{7})^2} = \frac{15+3\sqrt{7}}{25 - 7} = \frac{15+3\sqrt{7}}{18}$.

    „Erweiterst du einen Bruch mit einer Wurzel im Nenner mit genau dieser Wurzel, erhältst du eine Wurzel im Zähler.“

    • Beim Erweitern multiplizierst du Nenner und Zähler mit der gleichen Zahl. Ist dies eine Wurzel, erhältst du also eine Wurzel im Zähler: $\frac{a}{\sqrt{b}} = \frac{a\cdot \sqrt{b}}{\sqrt{b}\cdot \sqrt{b}} = \frac{a\cdot \sqrt{b}}{b}$.
  • Gib den Bruch ohne Wurzel im Nenner an.

    Tipps

    Die dritte binomische Formel lautet: $(a-b) \cdot (a+b) = a^2-b^2$. Wenn du also zwei Terme mit umgekehrter Rechenoperation (die zweite Zahl wechselt das Vorzeichen) miteinander multiplizierst, kannst du auch die beiden Zahlen quadrieren. Dabei verschwindet die Wurzel im Nenner automatisch.

    Ist eine Zahl Teiler aller Terme im Nenner und Zähler, kannst du den Bruch kürzen.

    Lösung

    So kannst du den Lückentext vervollständigen:

    „Um die Wurzel aus dem Nenner verschwinden zu lassen, macht er sich die dritte binomische Formel zunutze. Er erweitert den Bruch mit einem Term, der die Rechenoperation im Nenner umkehrt. Hier erweitert er also mit: $5+\sqrt{7}$.

    Im Nenner kann er jetzt die dritte binomische Formel verwenden. Er erhält für den Nenner:

    $(5-\sqrt{7})(5+\sqrt{7}) = 5^2-(\sqrt{7})^2= 18$“.

    • Die dritte binomische Formel lautet: $(a-b) \cdot (a+b) = a^2-b^2$. Wenn du also zwei Terme mit umgekehrter Rechenoperation (die zweite Zahl wechselt das Vorzeichen) miteinander multiplizierst, kannst du auch die beiden Zahlen quadrieren. Dabei verschwindet die Wurzel im Nenner automatisch.
    „Diesen Bruch kann er mit $3$ kürzen. Dazu teilt er Nenner und Zähler durch diese Zahl.

    Im Zähler des Ergebnisses kann eine Wurzel stehen.“

    • $3$ ist Teiler aller Terme im Nenner und Zähler. Also kannst du hier durch $3$ kürzen. $\dfrac{3(5+\sqrt{7})}{18}=\dfrac{5+\sqrt{7}}{6}$
  • Ermittle Ergebnisse der Brüche mit Wurzeln im Nenner.

    Tipps

    Du kannst die Lösungen bestimmen, indem du die Brüche geschickt erweiterst. Steht nur eine Wurzel im Nenner, erweiterst du mit dieser Wurzel.

    Wird zu der Wurzel im Nenner etwas addiert oder subtrahiert, kannst du die dritte binomische Formel verwenden, um die Wurzel im Nenner verschwinden zu lassen.

    Lösung

    Du kannst die Lösungen bestimmen, indem du die Brüche geschickt erweiterst. Steht nur eine Wurzel im Nenner, erweiterst du mit dieser Wurzel. Wird zu dieser Wurzel auch etwas addiert oder subtrahiert, kannst du die dritte binomische Formel verwenden. Damit erhältst du:

    • $\dfrac{3-\sqrt{7}}{\sqrt{7}} \cdot \dfrac{\sqrt{7}}{\sqrt{7}} = \dfrac{3\sqrt{7}-7}{7} $
    • $\dfrac{4}{\sqrt{3}-2} \cdot \dfrac{\sqrt{3}+2}{\sqrt{3}+2} = \dfrac{4\sqrt{3}+8}{3-4} = \dfrac{4\sqrt{3}+8}{-1} = -4\sqrt{3}-8$
    • $\dfrac{\sqrt{2}-\sqrt{3}}{\sqrt{3}} \cdot\dfrac{\sqrt{3}}{\sqrt{3}} = \dfrac{\sqrt{6}-3}{3} $
    • $ \dfrac{2}{\sqrt{6}} \cdot \dfrac{\sqrt{6}}{\sqrt{6}} = \dfrac{2\sqrt{6}}{6} = \dfrac{\sqrt{6}}{3} $
  • Ermittle, wie du die Brüche ohne Wurzel im Nenner schreiben kannst.

    Tipps

    Du kannst die Lösungen bestimmen, indem du immer mit der Wurzel aus dem Nenner erweiterst.

    Lösung

    Du kannst die Lösungen bestimmen, indem du immer mit der Wurzel aus dem Nenner erweiterst:

    • $\dfrac{2 \sqrt{3} + \sqrt{6} }{ \sqrt{3} }= \dfrac{2\cdot 3 + \sqrt{6} \cdot \sqrt{3} }{3 }=2+ \dfrac{ \sqrt{18} }{3}$
    • $\dfrac{ \sqrt{27} }{ \sqrt{3} }=\dfrac{ \sqrt{81} }{ 3}=\dfrac{ 9}{ 3 }= 3$
    • $\dfrac{ \sqrt{3} + \sqrt{5} }{ \sqrt{5} }=1+ \dfrac{ \sqrt{3} }{\sqrt{5}}=1+ \dfrac{ \sqrt{15} }{5}$
    • $\dfrac{ \sqrt{48} }{ \sqrt{3} }=\dfrac{ \sqrt{144} }{ 3}=\dfrac{ 12}{ 3 }= 4$
  • Bestimme, welche Rechenregel du anwenden kannst.

    Tipps

    Anhand der Zahlen im Nenner kannst du entscheiden, welche Rechenregel du verwenden musst, um den Bruch im Nenner verschwinden zu lassen. Steht nur eine Wurzel im Nenner, erweiterst du mit dieser Wurzel. Du brauchst also die Rechenregel:

    $\sqrt{a} \cdot \sqrt{b}=\sqrt{a \cdot b}$.

    Manchmal kannst du den Term auch vereinfachen, ohne eine der beiden Regeln anzuwenden.

    Lösung

    Anhand der Zahlen im Nenner kannst du entscheiden, welche Rechenregel du verwenden musst, um den Bruch im Nenner verschwinden zu lassen. Steht nur eine Wurzel im Nenner, erweiterst du mit dieser Wurzel. Du brauchst also die Rechenregel:

    $\sqrt{a} \cdot \sqrt{b}=\sqrt{a \cdot b}$.

    Wird zu dieser Wurzel auch etwas addiert oder subtrahiert, kannst du die dritte binomische Formel verwenden.

    $(a-b) \cdot (a+b)= a^2-b^2$

    Dann erhältst du:

    Zu $\sqrt{a} \cdot \sqrt{b}=\sqrt{a \cdot b}$ gehören diese Terme. Hier steht nur eine Wurzel im Nenner.

    • $\dfrac{3}{\sqrt{7}}$, $\dfrac{-2}{\sqrt{8}}$ und $\dfrac{7}{\sqrt{5}}$
    Zu $(a-b) \cdot (a+b)= a^2-b^2$ gehören folgende Terme. Hier wird nämlich zu der Wurzel im Nenner etwas addiert oder subtrahiert.

    • $\dfrac{3}{5-\sqrt{7}}$, $\dfrac{4}{2+\sqrt{3}}$ und $\dfrac{2}{5-\sqrt{6}}$
    Bei diesen Termen brauchst du keine der beiden Rechenregeln:

    • $\dfrac{\sqrt{7}}{-5}$ und $\dfrac{3}{\sqrt{9}}$.
    Beim ersten Term steht keine Wurzel im Nenner, während du beim zweiten die Wurzel ziehen kannst, ohne zuvor zu erweitern.

  • Prüfe, welche Brüche korrekt erweitert wurden.

    Tipps

    Beim Rechnen mit Variablen kannst du genauso vorgehen wie bei Zahlen. Abhängig vom Nenner erweiterst du die Brüche so, dass die Wurzel verschwindet.

    Eine der Rechnungen kannst du so erweitern:

    $\dfrac{8\sqrt{a}}{\sqrt{a}-\sqrt{b}} \cdot \dfrac{\sqrt{a}+\sqrt{b}}{\sqrt{a}+\sqrt{b}}$.

    Lösung

    Beim Rechnen mit Variablen kannst du genauso vorgehen wie bei Zahlen. Abhängig vom Nenner erweiterst du die Brüche. Dann erhältst du:

    Diese Brüche wurden nicht korrekt erweitert:

    „$\dfrac{8\sqrt{a}}{\sqrt{a}-\sqrt{b}} \neq \dfrac{8a+ \sqrt{b}}{a-b}$“.

    • Hier erhältst du: $\dfrac{8\sqrt{a}}{\sqrt{a}-\sqrt{b}} \cdot \dfrac{\sqrt{a}+\sqrt{b}}{\sqrt{a}+\sqrt{b}} = \dfrac{8a+ 8\sqrt{ab}}{a-b}$.
    „$\dfrac{\sqrt{a}+\sqrt{b}}{\sqrt{b}} \neq \sqrt{\dfrac{a}{b}}$“

    • Hier erhältst du: $\dfrac{\sqrt{a}+\sqrt{b}}{\sqrt{b}} \cdot \dfrac{\sqrt{b}}{\sqrt{b}}= \dfrac{b}{b} + \dfrac{\sqrt{ab}}{b}= 1+\sqrt{\dfrac{a}{b}}$.
    Diese Brüche wurden korrekt erweitert:

    „$\dfrac{3a}{4-\sqrt{b}} \cdot \dfrac{4+\sqrt{b}}{4+\sqrt{b}} =\dfrac{12a+3a \sqrt{b}}{16-b}$“

    „$\dfrac{3\sqrt{a}^3}{\sqrt{a}}=\dfrac{3a\cdot\sqrt{a}}{\sqrt{a}}= 3a$“

30 Tage kostenlos testen
Mit Spaß Noten verbessern
und vollen Zugriff erhalten auf

8.102

sofaheld-Level

6.601

vorgefertigte
Vokabeln

7.921

Lernvideos

37.022

Übungen

34.285

Arbeitsblätter

24h

Hilfe von Lehrer*
innen

laufender Yeti

Inhalte für alle Fächer und Klassenstufen.
Von Expert*innen erstellt und angepasst an die Lehrpläne der Bundesländer.

30 Tage kostenlos testen

Testphase jederzeit online beenden