30 Tage kostenlos testen:
Mehr Spaß am Lernen.

Überzeugen Sie sich von der Qualität unserer Inhalte.

Wurzeln im Nenner eines Bruchs beseitigen 04:08 min

Textversion des Videos

Transkript Wurzeln im Nenner eines Bruchs beseitigen

Sascha Sanftmuth ist ein glücklicher Bursche. Er könnte so zufrieden mit seinem ruhigen Leben im unteren Stock eines zweistöckigen Hauses sein, wäre da nicht sein Mitbewohner, ein radikaler Störenfried. Der trägt den Spitznamen "Wurzel", weil ihm seine Haare wie dicke Wurzeln über die Schultern hängen. Sascha nennt ihn aber meistens "Wurzel allen Übels" und möchte, dass er auszieht. Mit "Wurzel" fertigzuwerden ist fast so, wie der Umgang mit einer Wurzel im Nenner eines Bruchs. Wie das? Ich werde es dir zeigen. Wenn du Wurzeln in Brüchen entfernen willst, so wie Sascha, möchtest du die Wurzel loswerden, die im unteren Stockwerk des Bruchs lebt, also im Nenner. Schau dir diesen Bruch an. 2 durch Wurzel 3. Wie können wir die Wurzel im Nenner entfernen? Um die Aufgabe zu lösen, schauen wir uns erst einmal die Produktregel für Wurzeln an. Die Regel besagt: Die Wurzel von a mal die Wurzel von b ist gleich die Wurzel von a mal b. Hier ein Beispiel: Die Wurzel von 3 mal die Wurzel von 3 ist gleich die Wurzel von 3 mal 3. Das ist gleich der Wurzel von 9, also einer Quadratzahl. Das Ergebnis ist also 3. Wie können wir dieses Wissen nutzen, um die Wurzel im Nenner dieses Bruchs zu entfernen? Dazu erweiterst du den Bruch mit der Wurzel, die du loswerden willst. Wir erhalten dann hier 2 mal Wurzel 3 geteilt durch Wurzel 3 mal Wurzel 3, was vereinfacht 2 mal Wurzel 3 geteilt durch 3 ist. Die Wurzel im Nenner ist verschwunden. Dafür ist sie nun im Zähler, aber das ist ok. Aber was ist, wenn die Wurzel Faktor eines Produktes ist? Kein Problem, du gehst einfach genauso wie eben vor. Du erweiterst den Bruch mit der Wurzel, die du im Nenner entfernen willst. Wieder steht eine Wurzel im Zähler, statt im Nenner, aber das ist in Ordnung. Am Ende vereinfachst du den Bruch, falls das möglich ist. Was, wenn es komplizierter ist? Zum Beispiel, wenn im Nenner eine Addition oder eine Subtraktion steht? Ist das dann unmöglich zu lösen? Nein, mach einfach Folgendes: Statt den Bruch mit der Wurzel zu erweitern, die du entfernen willst, erweiterst du den Bruch mit einem Term, der die Rechenoperation im Nenner umkehrt. "Dafür änderst du das Rechenzeichen des Terms im Nenner so, dass eine Summe zu einer Differenz wird und umgekehrt. Für den Term a + b wäre dass dann also der Term a - b. Denn wenn du dieses Produkt, das der 3. binomischen Formel entspricht, ausrechnest, erhältst du a²- b². Das Quadrieren lässt die Wurzel aus dem Nenner verschwinden. "Okay, also erweitern wir den Bruch mit dem Nenner und kehren die Rechenoperation um. Wir vereinfachen so weit wie möglich. Das Ergebnis lautet 15 plus 3 mal Wurzel aus 7, dividiert durch 18. Wenn wir uns die Konstanten und Koeffizienten in beiden Termen anschauen, sehen wir, dass sie alle etwas gemeinsam haben: Sie sind durch 3 teilbar. Also können wir die 3 aus dem Zähler und Nenner ausklammern und und kürzen. Wir erhalten 5 plus Wurzel von 7 geteilt durch 6. Indem wir den Bruch erweitert haben, haben wir die Wurzel aus dem Nenner verschwinden lassen. Ebenso wie wir in den Rechnungen hat es auch Sascha geschafft: "Wurzel" ist ausgezogen. Vielleicht kannst dir schon denken, wohin? "Wurzel" hat Glück: anders als Sascha lässt Tabea Tanzgut aus dem oberen Stock gerne die Wände wackeln.

Wurzeln im Nenner eines Bruchs beseitigen Übung

Du möchtest dein gelerntes Wissen anwenden? Mit den Aufgaben zum Video Wurzeln im Nenner eines Bruchs beseitigen kannst du es wiederholen und üben.

  • Bestimme die korrekten Aussagen zum Beseitigen von Wurzeln im Nenner eines Bruchs.

    Tipps

    Das ist eine Rechenregel für Wurzeln: $\sqrt{a} \cdot \sqrt{b}= \sqrt{a \cdot b}$.

    Beim Erweitern eines Bruchs verändert der Bruch seinen Wert nicht.

    Lösung

    Diese Aussagen sind falsch:

    „Das Ergebnis einer Rechnung sollte keine Wurzel im Zähler enthalten.“

    • Im Zähler eines Bruchs stören Wurzeln nicht besonders. Wichtig ist, dass sie nicht im Nenner stehen.
    „Beim Erweitern eines Bruchs subtrahierst du von Nenner und Zähler jeweils die gleiche Zahl.“

    • Beim Erweitern eines Bruchs multiplizierst du Nenner und Zähler eines Bruchs mit der gleichen Zahl. Der Bruch verändert dabei seinen Wert nicht.
    Diese Aussagen sind richtig:

    „Multiplizierst du zwei Wurzeln, kannst du die Zahlen unter den Wurzeln multiplizieren und unter eine gemeinsame Wurzel schreiben.“

    • Das ist eine Rechenregel für Wurzeln: $\sqrt{a} \cdot \sqrt{b}= \sqrt{a \cdot b}$
    „Besteht der Nenner eines Bruches aus einer Addition oder Subtraktion, welche eine Wurzel enthält, kannst du mit einem Term erweitern, der die Rechenoperation im Nenner umkehrt. Anschließend kannst du die dritte binomische Formel anwenden, um die Wurzel verschwinden zu lassen.“

    • Die dritte binomische Formel lautet: $(a-b) \cdot (a+b) = a^2-b^2$. Diese Formel kannst du beim Vereinfachen von Brüchen mit Wurzeln im Nenner verwenden. Beispiel:
    $~~~~~~\frac{3}{5-\sqrt{7}} \cdot \frac{5+\sqrt{7}}{5+\sqrt{7}} = \frac{3(5 + \sqrt{7})}{(5-\sqrt{7}) \cdot (5+\sqrt{7})} = \frac{15+3\sqrt{7}}{5^2 - (\sqrt{7})^2} = \frac{15+3\sqrt{7}}{25 - 7} = \frac{15+3\sqrt{7}}{18}$

    „Erweiterst du einen Bruch mit einer Wurzel im Nenner mit genau dieser Wurzel, erhältst du eine Wurzel im Zähler.“

    • Beim Erweitern multiplizierst du Nenner und Zähler mit der gleichen Zahl. Ist dies eine Wurzel, erhältst du also eine Wurzel im Zähler: $\frac{a}{\sqrt{b}} = \frac{a\cdot \sqrt{b}}{\sqrt{b}\cdot \sqrt{b}} = \frac{a\cdot \sqrt{b}}{b}$
  • Bestimme, welche Rechenregel du anwenden kannst.

    Tipps

    Anhand der Zahlen im Nenner kannst du entscheiden, welche Rechenregel du verwenden musst, um den Bruch im Nenner verschwinden zu lassen. Steht nur eine Wurzel im Nenner, erweiterst du mit dieser Wurzel. Du brauchst also die Rechenregel:

    $\sqrt{a} \cdot \sqrt{b}=\sqrt{a \cdot b}$

    Manchmal kannst du den Term auch vereinfachen, ohne eine der beiden Regeln anzuwenden.

    Lösung

    Anhand der Zahlen im Nenner kannst du entscheiden, welche Rechenregel du verwenden musst, um den Bruch im Nenner verschwinden zu lassen. Steht nur eine Wurzel im Nenner, erweiterst du mit dieser Wurzel. Du brauchst also die Rechenregel:

    $\sqrt{a} \cdot \sqrt{b}=\sqrt{a \cdot b}$

    Wird zu dieser Wurzel auch etwas addiert oder subtrahiert, kannst du die dritte binomische Formel verwenden.

    $(a-b) \cdot (a+b)= a^2-b^2$

    Dann erhältst du:

    Zu $\sqrt{a} \cdot \sqrt{b}=\sqrt{a \cdot b}$ gehören diese Terme. Hier steht nur eine Wurzel im Nenner.

    • $\dfrac{3}{\sqrt{7}}$, $\dfrac{-2}{\sqrt{8}}$ und $\dfrac{7}{\sqrt{5}}$
    Zu $(a-b) \cdot (a+b)= a^2-b^2$ gehören folgende Terme. Hier wird nämlich zu der Wurzel im Nenner etwas addiert oder subtrahiert.

    • $\dfrac{3}{5-\sqrt{7}}$, $\dfrac{4}{2+\sqrt{3}}$ und $\dfrac{2}{5-\sqrt{6}}$
    Bei diesen Termen brauchst du keine der beiden Rechenregeln:

    • $\dfrac{\sqrt{7}}{-5}$ und $\dfrac{3}{\sqrt{9}}$
    Beim ersten Term steht keine Wurzel im Nenner, während du beim zweiten die Wurzel ziehen kannst, ohne zuvor zu erweitern.

  • Gib den Bruch ohne Wurzel im Nenner an.

    Tipps

    Die dritte binomische Formel lautet: $(a-b) \cdot (a+b) = a^2-b^2$. Wenn du also zwei Terme mit umgekehrter Rechenoperation (die zweite Zahl wechselt das Vorzeichen) miteinander multiplizierst, kannst du auch die beiden Zahlen quadrieren. Dabei verschwindet die Wurzel im Nenner automatisch.

    Ist eine Zahl Teiler aller Terme im Nenner und Zähler, kannst du den Bruch kürzen.

    Lösung

    So kannst du den Lückentext vervollständigen:

    „Um die Wurzel aus dem Nenner verschwinden zu lassen, macht er sich die dritte binomische Formel zu nutze. Er erweitert den Bruch mit einem Term, der die Rechenoperation im Nenner umkehrt. Hier erweitert er also mit: $5+\sqrt{7}$.

    Im Nenner kann er jetzt die dritte binomische Formel verwenden. Er erhält für den Nenner:

    $(5-\sqrt{7})(5+\sqrt{7}) = 5^2-(\sqrt{7})^2= 18$“

    • Die dritte binomische Formel lautet: $(a-b) \cdot (a+b) = a^2-b^2$. Wenn du also zwei Terme mit umgekehrter Rechenoperation (die zweite Zahl wechselt das Vorzeichen) miteinander multiplizierst, kannst du auch die beiden Zahlen quadrieren. Dabei verschwindet die Wurzel im Nenner automatisch.
    „Diesen Bruch kann er mit $3$ kürzen. Dazu teilt er Nenner und Zähler durch diese Zahl.

    Im Zähler des Ergebnisses kann eine Wurzel stehen.“

    • $3$ ist Teiler aller Terme im Nenner und Zähler. Also kannst du hier durch $3$ kürzen. $\dfrac{3(5+\sqrt{7})}{18}=\dfrac{5+\sqrt{7}}{6}$
  • Prüfe, welche Brüche korrekt erweitert wurden.

    Tipps

    Beim Rechnen mit Variablen kannst du genauso vorgehen wie bei Zahlen. Abhängig vom Nenner erweiterst du die Brüche so, dass die Wurzel verschwindet.

    Eine der Rechnungen kannst du so erweitern:

    $\dfrac{8\sqrt{a}}{\sqrt{a}-\sqrt{b}} \cdot \dfrac{\sqrt{a}+\sqrt{b}}{\sqrt{a}+\sqrt{b}}$

    Lösung

    Beim Rechnen mit Variablen kannst du genauso vorgehen wie bei Zahlen. Abhängig vom Nenner erweiterst du die Brüche. Dann erhältst du:

    Diese Brüche wurden nicht korrekt erweitert:

    „$\dfrac{8\sqrt{a}}{\sqrt{a}-\sqrt{b}} \neq \dfrac{8a+ \sqrt{b}}{a-b}$“

    • Hier erhältst du: $\dfrac{8\sqrt{a}}{\sqrt{a}-\sqrt{b}} \cdot \dfrac{\sqrt{a}+\sqrt{b}}{\sqrt{a}+\sqrt{b}} = \dfrac{8a+ 8\sqrt{ab}}{a-b}$
    „$\dfrac{\sqrt{a}+\sqrt{b}}{\sqrt{b}} \neq \sqrt{\dfrac{a}{b}}$“

    • Hier erhältst du: $\dfrac{\sqrt{a}+\sqrt{b}}{\sqrt{b}} \cdot \dfrac{\sqrt{b}}{\sqrt{b}}= \dfrac{b}{b} + \dfrac{\sqrt{ab}}{b}= 1+\sqrt{\dfrac{a}{b}}$
    Diese Brüche wurden korrekt erweitert:

    „$\dfrac{3a}{4-\sqrt{b}} \cdot \dfrac{4+\sqrt{b}}{4+\sqrt{b}} =\dfrac{12a+3a \sqrt{b}}{16-b}$“

    „$\dfrac{3\sqrt{a}^3}{\sqrt{a}}=\dfrac{3a\cdot\sqrt{a}}{\sqrt{a}}= 3a$“

  • Ermittle Ergebnisse der Brüche mit Wurzeln im Nenner.

    Tipps

    Du kannst die Lösungen bestimmen, indem du die Brüche geschickt erweiterst. Steht nur eine Wurzel im Nenner, erweiterst du mit dieser Wurzel.

    Wird zu der Wurzel im Nenner etwas addiert oder subtrahiert, kannst du die dritte binomische Formel verwenden, um die Wurzel im Nenner verschwinden zu lassen.

    Lösung

    Du kannst die Lösungen bestimmen, indem du die Brüche geschickt erweiterst. Steht nur eine Wurzel im Nenner, erweiterst du mit dieser Wurzel. Wird zu dieser Wurzel auch etwas addiert oder subtrahiert, kannst du die dritte binomische Formel verwenden. Damit erhältst du:

    • $\dfrac{3-\sqrt{7}}{\sqrt{7}} \cdot \dfrac{\sqrt{7}}{\sqrt{7}} = \dfrac{3\sqrt{7}-7}{7} $
    • $\dfrac{4}{\sqrt{3}-2} \cdot \dfrac{\sqrt{3}+2}{\sqrt{3}+2} = \dfrac{4\sqrt{3}+8}{3-4} = \dfrac{4\sqrt{3}+8}{-1} = -4\sqrt{3}-8$
    • $\dfrac{\sqrt{2}-\sqrt{3}}{\sqrt{3}} \cdot\dfrac{\sqrt{3}}{\sqrt{3}} = \dfrac{\sqrt{6}-3}{3} $
    • $ \dfrac{2}{\sqrt{6}} \cdot \dfrac{\sqrt{6}}{\sqrt{6}} = \dfrac{2\sqrt{6}}{6} = \dfrac{\sqrt{6}}{3} $
  • Ermittle, wie du die Brüche ohne Wurzel im Nenner schreiben kannst.

    Tipps

    Du kannst die Lösungen bestimmen, indem du immer mit der Wurzel aus dem Nenner erweiterst.

    Lösung

    Du kannst die Lösungen bestimmen, indem du immer mit der Wurzel aus dem Nenner erweiterst:

    • $\dfrac{2 \sqrt{3} + \sqrt{6} }{ \sqrt{3} }= \dfrac{2\cdot 3 + \sqrt{6} \cdot \sqrt{3} }{3 }=2+ \dfrac{ \sqrt{18} }{3}$
    • $\dfrac{ \sqrt{27} }{ \sqrt{3} }=\dfrac{ \sqrt{81} }{ 3}=\dfrac{ 9}{ 3 }= 3$
    • $\dfrac{ \sqrt{3} + \sqrt{5} }{ \sqrt{5} }=1+ \dfrac{ \sqrt{3} }{\sqrt{5}}=1+ \dfrac{ \sqrt{15} }{5}$
    • $\dfrac{ \sqrt{48} }{ \sqrt{3} }=\dfrac{ \sqrt{144} }{ 3}=\dfrac{ 12}{ 3 }= 4$