Über 1,6 Millionen Schüler*innen nutzen sofatutor!
  • 93%

    haben mit sofatutor ihre Noten in mindestens einem Fach verbessert

  • 94%

    verstehen den Schulstoff mit sofatutor besser

  • 92%

    können sich mit sofatutor besser auf Schularbeiten vorbereiten

Wurzeln aus rationalen Zahlen ziehen

Du willst ganz einfach ein neues Thema lernen
in nur 12 Minuten?
Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
  • Das Mädchen lernt 5 Minuten mit dem Computer 5 Minuten verstehen

    Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.

    92%
    der Schüler*innen hilft sofatutor beim selbstständigen Lernen.
  • Das Mädchen übt 5 Minuten auf dem Tablet 5 Minuten üben

    Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.

    93%
    der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert.
  • Das Mädchen stellt fragen und nutzt dafür ein Tablet 2 Minuten Fragen stellen

    Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.

    94%
    der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.
Bewertung

Ø 3.4 / 191 Bewertungen
Die Autor*innen
Avatar
Team Digital
Wurzeln aus rationalen Zahlen ziehen
lernst du in der 9. Klasse - 10. Klasse

Wurzeln aus rationalen Zahlen ziehen Übung

Du möchtest dein gelerntes Wissen anwenden? Mit den Aufgaben zum Video Wurzeln aus rationalen Zahlen ziehen kannst du es wiederholen und üben.
  • Berechne die Seitenlänge eines Schokoladenstücks, indem du die Wurzel einer rationalen Zahl ziehst.

    Tipps

    Für die Wurzel von Produkten gilt:

    $\sqrt{a \cdot b}= \sqrt{a} \cdot \sqrt{b}$

    $7^2=49$

    $11^2=121$

    Lösung

    Um die Wurzel aus $\frac{121}{49}$ zu ziehen, können wir folgende Beziehung ausnutzen:

    $\sqrt{a \cdot b}= \sqrt{a} \cdot \sqrt{b}$

    Dazu schreiben wir den Bruch $\frac{121}{49}$ als Produkt der Form $121 \cdot \frac{1}{49}$. Damit ergibt sich für die Wurzel:

    $\sqrt{\dfrac{121}{49}}=\sqrt{121 \cdot \dfrac{1}{49}}$

    Die Wurzel aus dem Produkt können wir jetzt als Produkt zweier Wurzeln schreiben:

    $\sqrt{121 \cdot \dfrac{1}{49}}=\sqrt{121} \cdot \sqrt{\dfrac{1}{49}}$

    Die zweite Wurzel kann nun als
    $\sqrt{\dfrac{1}{49}}=\dfrac{\sqrt{1}}{\sqrt{49}}=\dfrac{1}{\sqrt{49}}$
    geschrieben werden. Damit ergibt sich für die gesamte Rechung:

    $\sqrt{121} \cdot \sqrt{\dfrac{1}{49}}=\sqrt{121} \cdot \dfrac{1}{\sqrt{49}}$

    Danach können wir den Faktor $\sqrt{121}$ in den Zähler des Bruchs ziehen:

    $\sqrt{121} \cdot \dfrac{1}{\sqrt{49}}=\dfrac{\sqrt{121}}{\sqrt{49}} $

    Jetzt stehen unter den Wurzeln sowohl im Nenner als auch im Zähler Quadratzahlen. Daher ergibt sich als endgültiges Ergebnis:

    $\dfrac{\sqrt{121}}{\sqrt{49}}=\dfrac{11}{7}$

  • Bestimme die Lösung der gegebenen Wurzeln.

    Tipps

    Um aus der Dezimalzahl $0,\!46$ einen Bruch zu machen, musst du den Quotienten $\frac{0,46}{1}$ so oft mit $10$ erweitern, bis im Zähler keine Dezimalzahl mehr steht.
    Da $0,\!46$ zwei Nachkommastellen hat, genügt dies hier zweimal. Also ergibt sich:

    $\dfrac{0,\!46}{1}=\dfrac{4,\!6}{10}=\dfrac{46}{100}$

    Es gilt:

    $\sqrt{\dfrac{a}{b}}=\dfrac{\sqrt{a}}{\sqrt{b}}$

    Eine Quadratzahl ist eine Zahl, deren Wurzel eine natürliche Zahl ist.

    Lösung

    Herr Schokowski möchte die Wurzel aus $\frac{2}{32}$ auf zwei verschiedene Arten ziehen. Einmal, indem er kürzt und Quadratzahlen übrig bleiben, und einmal, indem er auf Quadratzahlen erweitert.

    Wenn er den Bruch $\frac{2}{32}$ mit $2$ kürzt, ergibt sich:

    $\dfrac{2}{32}=\dfrac{2}{2 \cdot 16}=\dfrac{1}{16}$

    Da $16$ wegen $\sqrt{16}=4$ eine Quadratzahl ist und $1$ mit $\sqrt{1}=1$ ebenfalls, ergibt sich mithilfe der Regel
    $\sqrt{\dfrac{a}{b}}=\dfrac{\sqrt{a}}{\sqrt{b}}$:

    $\sqrt{\dfrac{2}{32}}=\sqrt{\dfrac{1}{16}}=\dfrac{1}{\sqrt{16}}=\dfrac{1}{4}$

    Wenn er den Bruch $\frac{2}{32}$ mit $2$ erweitert, folgt:

    $\dfrac{2}{32}=\dfrac{2 \cdot 2}{2 \cdot 32}=\dfrac{4}{64}$

    Nun stehen sowohl im Nenner als auch im Zähler Quadratzahlen, denn:

    $\sqrt{4}=2\quad$ und $\quad\sqrt{64}=8$

    Daher ergibt sich insgesamt nach obiger Regel:

    $\sqrt{\dfrac{2}{32}}=\sqrt{\dfrac{4}{64}}=\dfrac{\sqrt{4}}{\sqrt{64}}=\dfrac{2}{8}$

    Jetzt kann Jürgen Schokowski noch einmal mit $2$ kürzen und erhält:

    $\dfrac{2}{8}=\dfrac{1}{4}$

    Durch Erweitern lässt sich auch die Wurzel aus Dezimalzahlen ziehen. Um die Wurzel aus $0,\!36$ zu ziehen, erweitert er den Bruch $\frac{0,36}{1}$ mit $100$:

    $\dfrac{0,\!36}{1}=\dfrac{100 \cdot 0,\!36}{100 \cdot 1}=\dfrac{36}{100}$

    Damit ergibt sich insgesamt für die Wurzel:

    $\sqrt{0,\!36}=\sqrt{\dfrac{36}{100}}=\dfrac{\sqrt{36}}{\sqrt{100}}=\dfrac{6}{10}$

    Der Bruch $\dfrac{6}{10}$ lässt sich wiederum als die Dezimalzahl $0,\!6$ schreiben.

  • Ermittle die Lösung der gegebenen Wurzeln.

    Tipps

    Wenn im Zähler und Nenner des Bruchs Quadratzahlen stehen, kann die Wurzel aus Zähler und Nenner direkt separiert gezogen werden.

    Stehen im Zähler und Nenner keine Quadratzahlen, solltest du den Bruch so kürzen oder erweitern, dass du Quadratzahlen in Zähler und Nenner erhältst.

    Lösung

    Erste Aufgabe

    Um die Wurzel aus $\frac{8}{32}$ zu ziehen, müssen wir entweder kürzen oder erweitern, da weder $8$ noch $32$ Quadratzahlen sind.

    Wenn wir mit $2$ kürzen, ergibt sich:

    $\sqrt{\dfrac{8}{32}}=\sqrt{\dfrac{4}{16}}=\dfrac{\sqrt{4}}{\sqrt{16}}=\dfrac{2}{4}=\dfrac{1}{2}$

    Und wenn wir mit $2$ erweitern, erhalten wir dasselbe Ergebnis (zum Glück!):

    $\sqrt{\dfrac{8}{32}}=\sqrt{\dfrac{16}{64}}=\dfrac{\sqrt{16}}{\sqrt{64}}=\dfrac{4}{8}=\dfrac{1}{2}$

    Zweite Aufgabe

    Um die Wurzel aus $\frac{2}{18}$ zu ziehen, müssen wir ebenfalls kürzen oder erweitern, da weder $2$ noch $18$ Quadratzahlen sind.

    Wenn wir mit $2$ kürzen, ergibt sich:

    $\sqrt{\dfrac{2}{18}}=\sqrt{\dfrac{1}{9}}=\dfrac{\sqrt{1}}{\sqrt{9}}=\dfrac{1}{3}$

    Und wenn wir mit $2$ erweitern:

    $\sqrt{\dfrac{2}{18}}=\sqrt{\dfrac{4}{36}}=\dfrac{\sqrt{4}}{\sqrt{36}}=\dfrac{2}{6}=\dfrac{1}{3}$

    Dritte Aufgabe

    Da sowohl $1$ als auch $25$ Quadratzahlen sind, müssen wir hier weder kürzen noch erweitern, um die Wurzel zu ziehen.

    Es folgt:

    $\sqrt{\dfrac{1}{25}}=\dfrac{\sqrt{1}}{\sqrt{25}}=\dfrac{1}{5}$

    Vierte Aufgabe

    Und weil sowohl $49$ als auch $16$ Quadratzahlen sind, müssen wir hier ebenfalls nicht kürzen oder erweitern, sondern können direkt die Wurzel ziehen:

    $\sqrt{\dfrac{49}{16}}=\dfrac{\sqrt{49}}{\sqrt{16}}=\dfrac{7}{4}$

  • Bestimme die Wurzel der gegebenen Terme.

    Tipps

    Um zwei Brüche zu addieren (oder zu subtrahieren), musst du sie zunächst gleichnamig machen. Das heißt, du erweiterst beide Brüche so, dass sie denselben Nenner haben.

    Werden zwei gleichnamige Brüche addiert, bleibt der Nenner gleich und die Zähler addieren sich.

    Bei der Multiplikation von Brüchen kannst du Zähler und Nenner getrennt multiplizieren:

    $\dfrac{a}{c}\cdot\dfrac{b}{d}=\dfrac{a\cdot b}{c \cdot d}$

    Lösung

    Erste Aufgabe

    Um $\sqrt{\frac{1}{32} + \frac{2}{64}}$ auszurechnen, müssen wir die beiden Brüche unter der Wurzel zunächst gleichnamig machen. Dafür erweitern wir den Bruch $\frac{1}{32}$ mit $2$. Es ergibt sich:

    $\sqrt{\dfrac{1}{32} + \dfrac{2}{64}}=\sqrt{\dfrac{2}{64} + \dfrac{2}{64}}=\sqrt{\dfrac{4}{64}}$

    Nun stehen Quadratzahlen in Zähler und Nenner. Damit folgt:

    $\sqrt{\dfrac{4}{64}}=\dfrac{\sqrt{4}}{\sqrt{64}}=\dfrac{2}{8}=\dfrac{1}{4}$

    Alternativ können wir den Bruch $\frac{2}{64}$ auch mit $2$ kürzen. In diesem Fall ergibt sich:

    $\sqrt{\dfrac{1}{32} + \dfrac{2}{64}}=\sqrt{\dfrac{1}{32} + \dfrac{1}{32}}=\sqrt{\dfrac{2}{32}}$

    Jetzt muss der Bruch mit $2$ auf $\sqrt{\frac{4}{64}}$ erweitert werden, damit in Zähler und Nenner Quadratzahlen stehen. Der letzte Rechenschritt ist dann der gleiche wie oben.

    Zweite Aufgabe

    Um $\sqrt{\frac{1}{6} + \frac{5}{18}}$ auszurechnen, müssen wir erst einmal wieder beide Brüche gleichnamig machen. Dafür erweitern wir den Bruch $\frac{1}{6}$ mit $3$:

    $\sqrt{\dfrac{1}{6} + \dfrac{5}{18}}=\sqrt{\dfrac{3}{18} + \dfrac{5}{18}}=\sqrt{\dfrac{8}{18}}$

    Nun stehen noch keine Quadratzahlen in Zähler und Nenner. Wir erweitern den Bruch also mit $2$ und erhalten:

    $\sqrt{\dfrac{8}{18}}=\sqrt{\dfrac{16}{36}}$

    Hier sind beide Zahlen Quadratzahlen. Also folgt:

    $\sqrt{\dfrac{16}{36}}=\dfrac{\sqrt{16}}{\sqrt{36}}=\dfrac{4}{6}=\dfrac{2}{3}$

    Dritte Aufgabe

    Um $\sqrt{\frac{1}{5} - \frac{4}{25}}$ auszurechnen, müssen die beiden Brüche $\frac{1}{5}$ und $\frac{4}{25}$ zunächst gleichnamig gemacht werden. Dafür erweitern wir den Bruch $\frac{1}{5}$ mit $5$:

    $\sqrt{\dfrac{1}{5} - \dfrac{4}{25}}=\sqrt{\dfrac{5}{25} - \dfrac{4}{25}}=\sqrt{\dfrac{1}{25}}$

    Jetzt stehen Quadratzahlen in Zähler und Nenner. Es folgt:

    $\sqrt{\dfrac{1}{25}}=\dfrac{\sqrt{1}}{\sqrt{25}}=\dfrac{1}{5}$

    Vierte Aufgabe

    Für die Multiplikation zweier Brüche müssen wir diese nicht gleichnamig machen. Daher folgt direkt:

    $\sqrt{\dfrac{5}{2} \cdot \dfrac{5}{18}}=\sqrt{\dfrac{25}{36}}$

    Es stehen Quadratzahlen in Zähler und Nenner und daher gilt:

    $\sqrt{\dfrac{25}{36}}=\dfrac{\sqrt{25}}{\sqrt{36}}=\dfrac{5}{6}$

  • Beschreibe das Vorgehen beim Ziehen der Wurzel rationaler Zahlen.

    Tipps

    $0,\!36=\dfrac{100 \cdot 0,\!36}{100 \cdot 1}=\dfrac{36}{100}$

    Das gleichzeitige Multiplizieren von Zähler und Nenner eines Bruchs mit der gleichen Zahl nennt man Erweitern des Bruchs.

    Die Zahlen $10$, $100$ und $1\,000$ sind Beispiele für Zehnerpotenzen.

    Lösung

    Um die Wurzel aus einer Dezimalzahl zu ziehen, kannst du eine Dezimalzahl als Bruch auffassen, beispielsweise:
    $0,\!36=\dfrac{0,\!36}{1}$.

    Nun möchtest du die Kommazahl im Zähler loswerden. Dafür multiplizierst du Zähler und Nenner mit einer geeigneten Zehnerpotenz. Du erweitert in diesem Fall mit $100$, da $0,\!36$ zwei Stellen hinter dem Komma hat.

    • Daher ist Aussage A richtig: Um die Wurzel aus einer Dezimalzahl zu ziehen, muss man einen Bruch erweitern.
    • Genauso ist daher Aussage B falsch: Um die Wurzel aus einer Dezimalzahl zu ziehen, muss man einen Bruch kürzen.
    Es ergibt sich:

    $\dfrac{0,\!36}{1}=\dfrac{100 \cdot 0,\!36}{100 \cdot 1}=\dfrac{36}{100}$

    Nun erhältst du einen Bruch, bei dem die Zehnerpotenz im Nenner steht.

    • Deshalb ist Aussage E richtig: Um die Wurzel aus einer Dezimalzahl zu ziehen, wandelt man diese in einen Bruch mit einer Zehnerpotenz im Nenner um.
    • Ebenso ist Aussage F falsch: Um die Wurzel aus einer Dezimalzahl zu ziehen, wandelt man diese in einen Bruch mit einer Zehnerpotenz im Zähler um.
    Es gilt $\sqrt{\frac{a}{b}}=\sqrt{a} \cdot \sqrt{\frac{1}{b}}$, denn du kannst den Bruch $\frac{a}{b}$ als Produkt der Form $a \cdot \frac{1}{b}$ auffassen und die Regel $\sqrt{a \cdot b}=\sqrt{a} \cdot \sqrt{b}$ anwenden.

    • Darum ist Aussage C falsch:
    $\sqrt{\dfrac{a}{b}}=\sqrt{b} \cdot \sqrt{\dfrac{1}{a}}$

    Wenn du die Regel $\sqrt{\frac{a}{b}}=\frac{\sqrt{a}}{\sqrt{b}}$ auf einen Bruch anwendet, ist es wichtig, dass du die Wurzel auf Zähler und Nenner überträgt.
    Daher gilt zum Beispiel:

    $\sqrt{\dfrac{4}{64}}=\dfrac{\sqrt{4}}{\sqrt{64}}$

    • Deswegen ist Aussage D falsch:
    $\sqrt{\dfrac{2}{32}}=\sqrt{\dfrac{4}{64}}=\dfrac{4}{\sqrt{64}}=\dfrac{4}{8}=\dfrac{1}{2}$
    • Darum ist Aussage G richtig:
    $\sqrt{\dfrac{a}{b}}=\dfrac{\sqrt{a}}{\sqrt{b}}$
    • Daher ist Aussage H richtig:
    $\sqrt{\dfrac{2}{32}}=\sqrt{\dfrac{1}{16}}=\dfrac{\sqrt{1}}{\sqrt{16}}=\dfrac{1}{4}$
  • Erschließe die Lösung der gegebenen Wurzel.

    Tipps

    Es gilt:

    $\sqrt{a \cdot b}=\sqrt{a} \cdot \sqrt{b}$

    Der Bruch $\frac{\sqrt{3} ~\cdot~ 3}{\sqrt{3} ~\cdot~ 2}$ lässt sich mit $\sqrt{3}$ kürzen.

    Lösung

    Um den Term $\sqrt{\frac{\sqrt{27}}{\sqrt{12}}\cdot \frac{1}{24}}$ zu vereinfachen, vereinfachen wir zunächst den ersten Bruch unter der Wurzel, der gegeben ist durch:

    $\dfrac{\sqrt{27}}{\sqrt{12}}$

    Für die Multiplikation von Wurzeln gilt:

    $\sqrt{a \cdot b}=\sqrt{a} \cdot \sqrt{b}$

    Damit gilt für den Zähler:

    $\sqrt{27}=\sqrt{3 \cdot 9}=\sqrt{3} \cdot \sqrt{9}= \sqrt{3} \cdot 3$, da $3 \cdot 3 =9$

    Für den Nenner gilt ebenso:

    $\sqrt{12}=\sqrt{3 \cdot 4}= \sqrt{3} \cdot \sqrt{4} =\sqrt{3} \cdot 2$, da die Wurzel aus $4$ gerade $2$

    Setzen wir dies in den ursprünglichen Term ein, erhalten wir:

    $\sqrt{\dfrac{\sqrt{3} \cdot 3}{\sqrt{3} \cdot 2 }\cdot \dfrac{1}{24}}$

    Nun kann man mit $\sqrt{3}$ im ersten Bruch kürzen und erhält insgesamt:

    $\sqrt{\dfrac{3}{2}\cdot \dfrac{1}{24}}$

    In einem Produkt von Brüchen kann man Zähler und Nenner verschiedener Brüche miteinander kürzen. Kürzt man in unserem Fall mit $3$, erhält man:

    $\sqrt{\dfrac{1}{2} \cdot \dfrac{1}{8}}$

    Multipliziert man die beiden Brüche unter der Wurzel miteinander, ergibt sich:

    $\sqrt{\dfrac{1}{16}}$

    Sowohl Nenner als auch Zähler sind Quadratzahlen. Daher müssen wir zum Ziehen der Wurzel weder kürzen noch erweitern. Es gilt also:

    $\sqrt{\dfrac{1}{16}}=\dfrac{\sqrt{1}}{\sqrt{16}}=\dfrac{1}{4}$

30 Tage kostenlos testen
Mit Spaß Noten verbessern
und vollen Zugriff erhalten auf

8.178

sofaheld-Level

6.601

vorgefertigte
Vokabeln

7.936

Lernvideos

37.099

Übungen

34.351

Arbeitsblätter

24h

Hilfe von Lehrer*
innen

laufender Yeti

Inhalte für alle Fächer und Klassenstufen.
Von Expert*innen erstellt und angepasst an die Lehrpläne der Bundesländer.

30 Tage kostenlos testen

Testphase jederzeit online beenden