Mengenoperationen – Schnitt, Vereinigung, Differenz
Wenn du Mengen kombinierst, bist du wie ein Detektiv! Entdecke, wie Mengenoperationen dir helfen, Eigenschaften zu verbinden und zu analysieren. Lerne die Schnittmenge, Differenzmenge und Vereinigungsmenge kennen. Interessiert? Dann lies weiter und erfahre mehr!

in nur 12 Minuten? Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
-
5 Minuten verstehen
Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.
92%der Schüler*innen hilft sofatutor beim selbstständigen Lernen. -
5 Minuten üben
Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.
93%der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert. -
2 Minuten Fragen stellen
Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.
94%der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.
Mengenoperationen – Schnitt, Vereinigung, Differenz Übung
-
Gib jeweils die zutreffende Mengenoperation und das passende Signalwort an.
TippsJedes Element der Vereinigungsmenge zweier Mengen $A$ und $B$ ist in $A$ oder in $B$ enthalten.
Jedes Element der Differenzmenge von $A$ und $B$ ist in $A$, aber nicht in $B$, enthalten.
Folgendes gilt für die mathematische Schreibweise der Mengenoperationen:
$ \begin{array}{l|l} \text{Symbol} & \text{Interpretation} \\ \hline A \cap B & A\ \text{geschnitten}\ B \\ A \cup B & A\ \text{vereinigt mit}\ B \\ A \setminus B & A\ \text{ohne}\ B \end{array} $
LösungHier abgebildet sind die gegebenen Mengen mit den zugehörigen Mengenoperationen sowie den jeweiligen Signalwörtern.
Alle Elemente der Schnittmenge $A\cap B$ sind in der Menge $A$ UND in der Menge $B$ enthalten.
Die Elemente der Differenzmenge $A\setminus B$ sind in der Menge $A$, ABER NICHT in der Menge $B$ enthalten.
Alle Elemente der Vereinigungsmenge $A\cup B$ sind in der Menge $A$ ODER in der Menge $B$ enthalten.
-
Bestimme die gesuchten Mengen.
TippsFolgendes gilt für die mathematische Schreibweise der Mengenoperationen:
- $A\cap B\quad\rightarrow\quad$ Schnittmenge von $A$ und $B$
- $A\cup B\quad\rightarrow\quad$ Vereinigungsmenge von $A$ und $B$
- $A\setminus B\quad\rightarrow\quad$ Differenzmenge von $A$ und $B$
In der Schnittmenge zweier Mengen sind alle gemeinsamen Elemente dieser beiden Mengen enthalten.
Bei der Bildung der Differenzmenge spielt die Reihenfolge der Mengen eine wichtige Rolle. Für den Fall $A\neq B$ ist zu beachten, dass Folgendes für die Differenzmengen gilt:
- $A\setminus B \neq B\setminus A$
LösungFolgende Mengen sind uns bekannt:
- $A=\{$Mann; Brille; Schnurrbart; dunkelblond; dicke Augenbrauen$\}$
- $B=\{$Mann; Brille; Schnurrbart; blaue Augen; breite Nase$\}$
- $C=\{$Shorts; Schal; Turnschuhe; Regenjacke; T-Shirt$\}$
- $D=\{$Shorts; Schal; Sandalen; Uhr$\}$
Nun möchten wir ausgehend von diesen Mengen Schnitt- und Differenzmengen bestimmen.
Insbesondere bei der Bestimmung der Differenzmengen müssen wir uns sehr gut konzentrieren. Denn sobald zwei Mengen $A$ und $B$ vorliegen, welche voneinander verschieden sind, ist die Differenzmenge $A$ ohne $B$ eine andere als die Differenzmenge $B$ ohne $A$. Die Reihenfolge der Mengen spielt also eine Rolle.
Schnittmenge $~ A\cap B$
Hier sind alle die Elemente gesucht, die in $A$ UND in $B$ enthalten sind. Es folgt:
$A\cap B=\{$Brille; Mann$\}$
Differenzmenge $~ A\setminus B$
Hier sind alle die Elemente gesucht, die in $A$, ABER NICHT in $B$ enthalten sind. Es folgt:
$A\setminus B=\{$Schnurrbart; dunkelblond; dicke Augenbrauen$\}$
Schnittmenge $~ C\cap D$
Hier sind alle die Elemente gesucht, die in $C$ UND in $D$ enthalten sind. Es folgt:
$C\cap D=\{$Shorts; Schal$\}$
Differenzmenge $~ D\setminus C$
Hier sind alle die Elemente gesucht, die in $D$, ABER NICHT in $C$ enthalten sind. Es folgt:
$D\setminus C=\{$Sandalen; Uhr$\}$
-
Ermittle die Lösung der gegebenen Mengenoperationen.
TippsFolgende Bedeutung haben die gegebenen Operationen:
$ \begin{array}{l|l} \text{Verwendung} & \text{Interpretation} \\ \hline A \cap B & A\ \text{geschnitten}\ B \\ A \setminus B & A\ \text{ohne}\ B \end{array} $
Schaue dir folgendes Beispiel an:
Sei $A=\{5;\ 2;\ 10\}$ und $B=\{2;\ 11;\ 8\}$ gegeben, so gilt:
$A\setminus B=\{5;\ 10\}$
LösungFolgende Mengen sind uns bekannt:
- $L=\{13;\ 4;\ 81;\ 22;\ 0,8\}$
- $M=\{11;\ 4;\ 81;\ 19;\ 0,9\}$
- $J=\{11;\ 6;\ 81;\ 22;\ 0,9\}$
Schnittmenge $L\cap M$
Wir suchen alle Zahlen, die in $L$ UND in $M$ enthalten sind. So ermitteln wir folgende Schnittmenge:
$L\cap M=\{4;\ 81\}$
Demnach ist die Auswahl $L\cap M=\{4;\ 0,9\}$ falsch.
Schnittmenge $L\cap J$
Nun suchen wir alle Einträge, die in $L$ UND in $J$ enthalten sind. So ermitteln wir folgende Schnittmenge:
$L\cap J=\{81;\ 22\}$
Differenzmenge $M\setminus J$
Gesucht sind alle Elemente, die in $M$, aber nicht in $J$ enthalten sind. Wir ermitteln dann folgende Differenzmenge:
$M\setminus J=\{4;\ 19\}$
Differenzmenge $J\setminus L$
Gesucht sind alle Zahlen, die in $J$, aber nicht in $L$ enthalten sind. Wir ermitteln dann folgende Differenzmenge:
$J\setminus L=\{11;\ 6;\ 0,9\}$
Demnach ist die Auswahl $J\setminus L=\{13;\ 4;\ 0,8\}$ falsch.
-
Bestimme die Schnitt- und Differenzmengen.
TippsSchaue dir folgendes Beispiel an:
$R_3\setminus L=\{$Milch; Stärke$\}$
Wenn zwei Mengen kein gemeinsames Element haben, so entspricht ihre Schnittmenge der leeren Menge $\{\}$.
LösungChefkoch Luigi hat folgende Zutaten:
- $L=\{$Mehl; Zucker; Butter; Backpulver; Puderzucker$\}$
Und je folgende Zutaten braucht er für die vier Rezepte:
- $R_1=\{$Mehl; Butter; Zucker; Vanillezucker$\}$
- $R_2=\{$Mehl; Milch; Eier; Zucker$\}$
- $R_3=\{$Mehl; Milch; Stärke; Zucker$\}$
- $R_4=\{$Milch; Stärke; Vanillezucker$\}$
Wir möchten schauen, welche Zutaten dem Chefkoch für diese Rezepte fehlen. Dafür bestimmen wir einige Schnitt- und Differenzmengen:
- $R_1\setminus L=\{$Vanillezucker$\}\ \rightarrow$ Für dieses Rezept fehlt dem Koch Vanillezucker.
- $R_2\setminus L=\{$Eier; Milch$\}\ \rightarrow$ Hier fehlen ihm sogar zwei Zutaten.
- $R_3\cap L=\{$Mehl; Zucker$\}\ \rightarrow$ Für dieses Rezept hat er nur Mehl und Zucker in seinem Vorrat.
- $R_4\cap L=\{\}\ \rightarrow$ Für dieses Rezept fehlen ihm alle Zutaten.
Die Mengen $R_4$ und $L$ sind nämlich elementfremd. Das bedeutet, dass sie kein gemeinsames Element haben. Daher entspricht ihre Schnittmenge der leeren Menge.
Demnach eignet sich das erste Rezept am besten.
-
Gib die mathematische Schreibweise der Mengenoperationen an.
TippsSchaue dir folgendes Beispiel an:
Sei $A=\{1;\ 2;\ 3\}$ und $B=\{2;\ 4\}$. Dann gilt:
$A\cap B=\{2\}$.
Die Differenzmenge $A\setminus B$ enthält alle Elemente, die in $A$, aber nicht in $B$ enthalten sind.
Ist eine Menge $B$ Teilmenge einer Menge $A$, so schreiben wir $B\subseteq A$.
LösungDie Bezeichnungen der Mengenoperationen sowie ihre mathematischen Schreibweisen kannst du der nachfolgenden Tabelle entnehmen:
$ \begin{array}{l|l} \text{mathematische Schreibweise} & \text{Bezeichnung} \\ \hline A \cap B & A\ \text{geschnitten}\ B \\ A \cup B & A\ \text{vereinigt mit}\ B \\ A \setminus B & A\ \text{ohne}\ B \\ B \setminus A & B\ \text{ohne}\ A \end{array} $
Handelt es sich bei einer Menge $B$ um die Teilmenge einer Menge $A$, schreiben wir $B\subseteq A$. Ist $A$ hingegen die Teilmenge von $B$, schreiben wir $A\subseteq B$.
-
Bilde die gesuchte Menge.
TippsGehe in dieser Aufgabe Schritt für Schritt vor. Bestimme zunächst die Schnittmenge $A\cap B$. Diese enthält alle Elemente, die in $A$ UND in $B$ enthalten sind.
Im nächsten Schritt betrachtest du die gesuchte Differenzmenge. Du ziehst von der Schnittmenge $A\cap B$ alle Elemente ab, die in $C$ enthalten sind.
LösungDoktor Evil muss folgende Menge $E$ finden:
- $A=\{3;\ 8;\ 12;\ 18;\ 23;\ 31;\ 52\}$
- $B=\{3;\ 7;\ 11,5;\ 18;\ 23;\ 30;\ 52\}$
- $C=\{1;\ 5;\ 12;\ 18;\ 21;\ 31;\ 50\}$
- $D=A\cap B$
- $E=D\setminus C$
Hierzu rechnen wir Schritt für Schritt. Wir bestimmen zunächst die Schnittmenge:
$D=A\cap B=\{3;\ 18;\ 23;\ 52\}$
Danach bestimmen wir die gesuchte Differenzmenge:
$E=D\setminus C=\{3;\ 23;\ 52\}$
9.369
sofaheld-Level
6.600
vorgefertigte
Vokabeln
8.224
Lernvideos
38.691
Übungen
33.496
Arbeitsblätter
24h
Hilfe von Lehrkräften

Inhalte für alle Fächer und Klassenstufen.
Von Expert*innen erstellt und angepasst an die Lehrpläne der Bundesländer.
Testphase jederzeit online beenden
Beliebteste Themen in Mathematik
- Römische Zahlen
- Prozentrechnung
- Prozentrechnung - Übungen
- Primzahlen
- Geometrische Lagebezeichnungen
- Was ist eine Ecke?
- Rechteck
- Was ist eine Gleichung?
- Pq-Formel
- Binomische Formeln
- Trapez
- Flächeninhalt – Übungen
- Volumen Zylinder
- Potenzgesetze – Übungen
- Umfang Kreis
- Zehnerzahlen vergleichen und ordnen – Übungen
- Quadrat
- Zahlen sortieren – Übungen
- Division
- Binomische Formeln – Übungen
- Raute
- Brüche umwandeln Übungen
- Parallelogramm
- Ungleichungen – Übungen
- Polynomdivision
- Zahlen bis 1000 ordnen – Übungen
- Was Ist Eine Viertelstunde
- Terme mit Variablen aufstellen – Übungen
- Prisma
- Die Grundrechenarten – Übungen
- Mitternachtsformel
- Äquivalenzumformung
- Grundrechenarten Begriffe
- Größer Kleiner Zeichen
- Dreiecksarten
- Punkt-vor-Strich und Klammern-zuerst-Regel
- Aufbau von Dreiecken
- Quader
- Zahlen runden – Übungen
- Satz Des Pythagoras
- Ziffern und Stellenwerte – Übungen
- Dreieck Grundschule
- Koordinatensystem – Übungen
- Erste Binomische Formel
- Kreis
- Trigonometrie
- Trigonometrische Funktionen
- Standardabweichung
- Quadratische Gleichungen – Übungen
- Flächeninhalt