30 Tage kostenlos testen:
Mehr Spaß am Lernen.

Überzeugen Sie sich von der Qualität unserer Inhalte.

Mengen – Einführung 04:23 min

Textversion des Videos

Transkript Mengen – Einführung

Heiliger Bimbam. Baroness von Etepetete ist fassungslos. "Ihr Safe, in dem all ihre wichtigsten und wertvollsten Habseligkeiten aufbewahrt waren, wurde aus ihrer Villa geklaut." Um ihr zu helfen, benötigen wir einige Informationen zum Inhalt des gestohlenen Safes. Wusstest du, dass es in der Mathematik etwas gibt, das so ähnlich ist wie ein Safe? Das sind die so genannten Mengen und die nehmen wir jetzt mal genauer unter die Lupe! Sowohl Mengen als auch Safes sind geschlossen und beide enthalten verschiedene Dinge. Diese nennt man "Elemente". Im Safe der Baroness befinden sich die Elemente, Geld, Pokal, Diamant, Tagebuch, Krone und Halskette. Als Menge stellen wir die Elemente in einer Ellipse dar. Jede Menge wird außerdem mit einem Großbuchstaben bezeichnet. Hier nehmen wir "M", könnten aber auch jeden anderen Buchstaben wählen. Doch alle Elemente aufzumalen ist ziemlich aufwendig, oder? Deshalb hat man sich hierfür eine einfache mathematische Schreibweise überlegt. Statt der Ellipse verwenden wir nun geschweifte Klammern. Beim Auflisten der Elemente trennst du die einzelnen Elemente durch ein Semikolon. Übrigens: In welcher Reihenfolge du die Elemente in den geschweiften Klammern auflistest, spielt keine Rolle. Die Menge bleibt immer gleich! Wie aber ändert sich die Menge, wenn ein Element doppelt vorkommt? Nehmen wir an, dass ein zweiter Diamant im Safe ist. Sieh mal, an der mathematischen Schreibweise der Menge M ändert das nichts! Warum? In einer Menge werden nur unterschiedliche Elemente aufgeführt. Du musst allerdings nicht immer alle Elemente einzeln auflisten. Wenn wir beispielsweise alle ganzen Zahlen von 1 bis 100 angeben wollen, wäre das eine lange, unübersichtliche Liste. In so einem Fall können wir Auslassungspunkte, also drei Punkte, verwenden. Natürlich kann eine Menge - genau wie ein Safe - auch leer sein, wie hier Menge A. Dann gibt es gleich zwei unterschiedliche mathematische Schreibweisen. Entweder nutzen wir zwei geschweifte Klammern ohne Elemente oder einen schräg durchgestrichenen Kreis. Zurück zum Safe der Baroness. Wir können untersuchen, ob sich ein bestimmtes Element darin befindet, also Teil der Menge ist, oder nicht. Befindet sich im Safe eine Halskette? Oder mathematisch gefragt: Ist eine Halskette in unserer Menge M enthalten? Ja. Wir schreiben: Die Halskette ist Element der Menge M. Der Goldbarren hier ist übrigens nicht im Safe und somit nicht Element von M. Lass uns das Wichtigste zu Mengen noch einmal kurz durchgehen. Um eine Menge graphisch darzustellen, werden alle Elemente in einer Ellipse zusammengefasst. Die Menge bezeichnest du mit einem Großbuchstaben. Leere Mengen kannst du so oder so beschreiben. Meistens jedoch enthält eine Menge viele unterschiedliche Elemente. Dann ist es interessant zu wissen, ob bestimmte Elemente Teil der Menge sind oder nicht. Für die mathematische Schreibweise listest du die Elemente in geschweiften Klammern auf und trennst sie mit einem Semikolon. In eindeutigen Fällen kannst du Auslassungspunkte verwenden. Jetzt, wo wir uns mit dem Safe und seinem Inhalt genauer befasst haben, sind wir bestens gerüstet, um den Fall zu lösen und den Dieb dingfest zu machen. Wer sagt's denn? Sieht aus, als hätte Polizeihund Jonny schon eine heiße Spur..... Aber Jonny! Du bist doch im Dienst!

1 Kommentar
  1. Vielen Dank! Dieses Video habe ich echt Toll und sehr gut erklärt gefunden!

    Von Mthemesslhuber, vor etwa einem Monat

Mengen – Einführung Übung

Du möchtest dein gelerntes Wissen anwenden? Mit den Aufgaben zum Video Mengen – Einführung kannst du es wiederholen und üben.

  • Bestimme, welche Elemente zur Menge gehören.

    Tipps

    Vergleiche mit folgendem Beispiel:

    Ein Goldbarren war nicht im Safe der Baronesse. Man schreibt $\text{Goldbarren}\ \notin\ M$.

    Folgendes gilt für die Schreibweise der Elemente einer Menge:

    Ist das Objekt Element der Menge $M$, schreiben wir $\in\ M$.
    Ist das Objekt nicht Element der Menge $M$, schreiben wir $\notin\ M$.

    Lösung

    Zunächst vergleichen wir, welche Gegenstände sich im Safe der Baronesse befanden und welche nicht.
    In ihrem Safe, den wir Menge $M$ nennen, waren der Diamant, die Geldscheine, die Halskette, der Pokal, das Tagebuch und die Krone. Diese Gegenstände sind Elemente der Menge $M$. Wir schreiben $\in\ M$.
    Die Münzen und der Ring befanden sich nicht im Safe, sie sind also nicht Teil der Menge $M$. Wir schreiben $\notin\ M$.

    Demnach sind folgende Aussagen bezüglich der Menge $M$ richtig:

    • $\text{Diamant}\ \in\ M$
    • $\text{Tagebuch}\ \in\ M$
    • $\text{Geldscheine}\ \in\ M$
    • $\text{Krone}\ \in\ M$
    • $\text{Ring}\ \notin\ M$
    Somit sind diese Aussagen falsch:

    • $\text{Halskette}\ \notin\ M$
    • $\text{M}\ddot{\text{u}}\text{nzen}\ \in\ M$
    • $\text{Pokal}\ \notin\ M$
    Die mathematischen Ausdrücke werden wie folgt gesprochen:

    • $\text{Diamant}\ \in\ M:$ Der Diamant ist Element der Menge $M$.
    • $\text{Halskette}\ \notin\ M:$ Die Halskette ist nicht Element der Menge $M$.
  • Bestimme, welche Schreibweisen zur abgebildeten Menge passen.

    Tipps

    Erinnere dich: In der mathematischen Schreibweise benutzen wir geschweifte Klammern und Semikolons.

    Es werden nur unterschiedliche Elemente aufgeschrieben.

    Vergleiche, welche Elemente wirklich in der Menge $M$ enthalten sind.

    Zwar können Mengen mit einem beliebigen Großbuchstaben bezeichnet werden, die abgebildete Menge hat aber schon einen bestimmten Buchstaben als Namen.

    Lösung

    Bevor wir die gegebenen Mengen $A$ und $M$ betrachten, schauen wir uns zunächst die mathematische Schreibweise von Mengen an. Eine Menge wird immer mit einem Großbuchstaben bezeichnet. Anschließend werden alle Elemente, die in dieser Menge enthalten sind, innerhalb geschweifter Klammern geschrieben und mittels Semikolons getrennt. Die Reihenfolge, in der man die Elemente notiert, ist dabei egal. Ist eine Menge leer, stehen keine Elemente zwischen den geschweiften Klammern.

    Diese Mengenbeschreibungen passen zu der abgebildeten Menge $M$:

    • $M = \{\text{Geld; Halskette; Diamant; Pokal; Tagebuch; Krone}\}$
    • $M = \{\text{Pokal; Krone; Tagebuch; Geld; Halskette; Diamant}\}$
    Und so drückt man in der mathematischen Schreibweise Menge $A$ aus:
    • $A = \{~\}$

  • Bestimme, welche Aussagen über Mengen richtig sind.

    Tipps

    Es werden nur unterschiedliche Elemente aufgeschrieben.

    Es gibt die folgende mathematische Schreibweise:

    $M=\{~\}$

    Was könnte diese bedeuten?

    Bei eindeutigen Fällen, zum Beispiel bei fortlaufenden Zahlen von eins bis $100$, kann man Auslassungspunkte verwenden.

    Lösung

    Dinge, die in einer Menge enthalten sind, nennt man Elemente.
    $\rightarrow~$ Diese Aussage ist richtig.

    Eine Menge wird immer mit dem Großbuchstaben $M$ bezeichnet.
    $\rightarrow~$ Diese Aussage ist falsch, denn eine Menge kann mit jedem beliebigen Großbuchstaben bezeichnet werden.

    Eine Menge kann leer sein.
    $\rightarrow~$ Diese Aussage ist richtig. Man schreibt dann zum Beispiel: $M = \{~\}$ oder $M = \oslash$.

    Wir haben eine Menge $M$ mit den Elementen Diamant, Pokal und Geld. So ist eine richtige mathematische Schreibweise: $M = \{\text{Diamant; Pokal; Geld}\}$
    $\rightarrow~$ Diese Aussage ist richtig.

    Wir haben eine Menge $M$ mit den Elementen Diamant, Diamant, Pokal und Geld. So ist eine richtige mathematische Schreibweise: $M = \{\text{Diamant; Diamant; Pokal; Geld}\}$
    $\rightarrow~$ Diese Aussage ist falsch, denn es werden nur unterschiedliche Elemente aufgeschrieben, egal wie oft sie vorkommen.

    Man muss immer jedes Element aufschreiben, egal wie viele Elemente die Menge umfasst.
    $\rightarrow~$ Diese Aussage ist falsch, denn in eindeutigen Fällen wie fortlaufenden Zahlen von eins bis $100$ kann man Auslassungspunkte verwenden.

    Wir haben eine Menge $M$ mit den Elementen Tagebuch, Krone und Halskette. Das kann man verschieden aufschreiben:
    $M = \{\text{Tagebuch; Krone; Halskette}\}$
    $M = \{\text{Halskette; Tagebuch; Krone}\}$
    $M = \{\text{Krone; Halskette; Tagebuch}\}$
    $\rightarrow~$ Diese Aussage ist richtig, denn die Reihenfolge der Elemente ist egal.

  • Entscheide, ob der Gegenstand Element oder nicht Element von der Menge ist.

    Tipps

    Erinnere dich: $\in$ spricht man „Element von“ und $\notin$ spricht man „nicht Element von“.

    Vergleiche:

    $\text{Diamant}\in D$

    $B\not\ni \text{Fussball}$

    Lösung

    Diese vier Mengenbeschreibungen liegen dir vor:

    • $A = \{\text{Topf; Löffel; Tasse; Pfanne}\}$
    • $B = \{\text{Fisch; Huhn; Esel; Ente}\}$
    • $C = \{\text{Fußball; Basketball; Tennis; Schwimmen}\}$
    • $D = \{\text{Kristall; Diamant; Krone; Goldbarren}\}$
    $\in$ bedeutet Element von und $\notin$ bedeutet nicht Element von. Außerdem kennen wir nun auch noch folgende Zeichen: $\ni$ heißt enthält als Element und $\not\ni$ bedeutet enthält nicht als Element. Somit sind folgende Aussagen richtig:

    • $\text{Topf}\in A$
    • $B\not\ni \text{Krone}$
    • $\text{Fisch}\notin D$
    • $C\ni\text{Tennis}$
    • $A\ni\text{Pfanne}$
    • $\text{Handball}$ $\notin$ $B$
    • $C\not\ni \text{Kristall}$
    • $B\ni\text{Ente}$
  • Zeige, welche Elemente zu welcher Menge gehören.

    Tipps

    Manche Elemente gehören weder zu Menge $A$ noch zu Menge $B$. Diese Elemente sind dann weder in $A =$ noch in $B =$ zwischen den geschweiften Klammern zu finden.

    Hier ein mathematischer Tipp:

    $\text{Goldmünze}\notin A$

    Lösung

    Lukas' Sportrucksack wird als Menge $A$ bezeichnet und die Schatzkiste seines kleinen Bruders als Menge $B$.

    Die mathematische Schreibweise sagt:

    $A = \{\text{Tennisschläger; Schwimmbrille; Fußball; Springseil}\}$

    Also gehören in Lukas' Sportrucksack der Tennisschläger, die Schwimmbrille, der Fußball und das Springseil.

    Weiterhin haben wir noch:

    $B = \{\text{Muscheln; Perlen; Goldmünze; Bonbon}\}$

    In die Schatzkiste des Bruders gehören demnach die Muscheln, die Perlen, die Goldmünze und der Bonbon.

    Der Basketball und der Papierflieger stehen weder in der mathematischen Schreibweise von Menge $A$ noch von Menge $B$. Also gehören diese Elemente zu keiner der beiden Mengen.

  • Entscheide, welche Gegenstände in welche Menge gehören.

    Tipps

    Erinnere dich: Mengen können leer sein.

    Hier ein mathematischer Tipp:

    $\text{Brille}\notin R$

    Lösung

    Timmy nimmt diese Sachen mit: Handy, Ball, Brille, Badehose, Handtuch, Buch und Flasche.
    Mengenbeschreibungen schreiben wir mit einem Großbuchstaben. Dann werden die Elemente in beliebiger Reihenfolge aufgezählt und mit Semikolons getrennt sowie zusammen in geschweifte Klammern gesetzt.

    In seinen Rucksack $R$ tut Timmy diese Dinge:

    • $R = \{\text{Handtuch; Badehose; Buch; Handy}\}$
    In seinen Fahrradkorb $K$ legt er diese Dinge:
    • $K = \{\text{Flasche; Ball; Brille}\}$
    Nun hat er alle Sachen verstaut und sein Gepäckträger $G$ bleibt leer. Wir können also sagen, dass die Menge $G$ leer ist. Das schreiben wir so:
    • $G = \{~\}$
    Übrigens kannst du die Elemente in beliebiger Reihenfolge aufschreiben. Also wäre zum Beispiel auch folgende Antwort richtig:
    • $R = \{\text{Badehose; Handtuch; Handy; Buch}\}$.