Umkehrung der zentrischen Streckung – Streckzentrum und Streckfaktor bestimmen
Entdecke, wie du die zentrische Streckung rückgängig machst! Lerne, das Streckzentrum zu identifizieren und den Streckfaktor zu berechnen. Verstehst du die Grundlagen, aber brauchst mehr Praxis? Tauche tiefer ein und teste dein Wissen mit unseren Übungen!
- Zentrische Streckung umkehren
- Streckzentrum finden
- Wie berechnet man den Streckfaktor?
- Streckzentrum finden und Streckfaktor berechnen – noch ein Beispiel

in nur 12 Minuten? Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
-
5 Minuten verstehen
Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.
92%der Schüler*innen hilft sofatutor beim selbstständigen Lernen. -
5 Minuten üben
Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.
93%der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert. -
2 Minuten Fragen stellen
Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.
94%der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.
Umkehrung der zentrischen Streckung – Streckzentrum und Streckfaktor bestimmen Übung
-
Beschreibe das Vorgehen beim Bestimmen des Streckzentrums.
TippsDas Streckzentrum $Z$ sowie der Ursprungspunkt $A$ und sein Bildpunkt $A'$ müssen auf einer Geraden liegen.
Das Ziel ist es zu zeigen, dass sich die Geraden durch die Ursprungspunkte und ihre zugehörigen Bildpunkte im Streckzentrum schneiden.
LösungDas Streckzentrum $Z$ können wir folgendermaßen bestimmen:
- Zuerst zeichnen wir eine Gerade durch den Ursprungspunkt $A$ und seinen Bildpunkt $A'$.
- Dann zeichnen wir eine zweite Gerade durch $C$ und $C'$.
- Die beiden Geraden schneiden sich in einem Punkt.
- Zur Sicherheit zeichnen wir eine dritte Gerade durch $B$ und $B'$.
- Schneiden sich alle drei Geraden in demselben Punkt, können wir sicher sein, dass hier das Streckzentrum liegt.
-
Berechne den Streckfaktor.
TippsLiegen Ursprungsfigur und Bildfigur auf unterschiedlichen Seiten des Streckzentrums, ist der Streckfaktor negativ.
Beim Durchführen einer Streckung multiplizierst du den Abstand zwischen Ursprungspunkt und Streckzentrum $\overline{AZ}$ mit dem Streckfaktor $m$, um den Abstand zwischen Bildpunkt und Streckzentrum $\overline{A'Z}$ zu erhalten. Gilt also $m>1$, dann gilt:
$\overline{AZ}<\overline{A'Z}$
LösungDen Streckfaktor kannst du so bestimmen:
- Da Ursprungs- und Bildfigur auf der gleichen Seite des Streckzentrums liegen, muss der Streckfaktor positiv sein, also:
- Da die Bildfigur kleiner als die Ursprungsfigur ist, muss der Streckfaktor kleiner als Eins sein, also gilt:
Beim Durchführen einer Streckung multiplizierst du den Abstand zwischen Ursprungspunkt und Streckzentrum $\overline{AZ}$ mit dem Streckfaktor $m$, um den Abstand zwischen Bildpunkt und Streckzentrum $\overline{A'Z}$ zu erhalten. Gilt also $m>1$, dann gilt:
$\overline{AZ}<\overline{A'Z}$
- Den Betrag des Streckfaktors kannst du bestimmen, indem du die Entfernung eines beliebigen Ursprungspunkts und seines Bildpunkts zum Streckzentrum misst. Hier gilt:
$\overline{A'Z}=500~\text{m}$
- Den Streckfaktor $m$ bestimmst du jetzt, indem du die Strecke $\overline{A'Z}$ durch $\overline{AZ}$ teilst:
Beim Durchführen einer Streckung rechnest du $\overline{A'Z}= m \cdot \overline{AZ}$. Da du hier den Streckfaktor $m$ berechnen willst, wurde die Gleichung umgestellt.
-
Bestimme die korrekten Aussagen zu dieser Streckung.
TippsDen Betrag des Streckfaktors kannst du bestimmen, indem du die Entfernung eines beliebigen Bildpunktes zum Streckzentrum durch die Entfernung seines Ursprungspunktes zum Streckzentrum teilst.
Beispiel:
$\vert m \vert =\dfrac{\overline{A'Z}}{\overline{AZ}}$
Alle Geraden durch die Ursprungspunkte und ihre zugehörigen Bildpunkte schneiden sich in demselben Punkt.
LösungDiese Aussagen sind falsch:
- Das Streckzentrum liegt bei $X$. Daraus folgt, dass der Streckfaktor positiv sein muss.
- Der Streckfaktor beträgt $~m=-\frac{2}{3}$.
- Der Streckfaktor beträgt $~m=\frac{2}{3}$.
- Verbindet man $A$ und $A'$ durch eine Gerade, verläuft diese durch den Punkt $X$. Daraus folgt, dass hier das Streckzentrum liegt.
Diese Aussagen sind korrekt:
- Weil das Streckzentrum zwischen den Figuren liegt, hat die Bildfigur wie bei einer Punktspiegelung die Orientierung gewechselt.
- Ist der Streckfaktor negativ, muss das Streckzentrum zwischen den beiden Figuren liegen.
- Der Streckfaktor beträgt $~m=-\frac{3}{2}$.
-
Ermittle die Streckfaktoren.
TippsStehen Ursprungs- und Bildfigur auf einer Seite des Streckzentrums, dann haben beide Figuren die gleiche Ausrichtung und der Streckfaktor ist positiv.
Für $\overline{A'Z}=5~\text{m}$ und $\overline{AZ}=7~\text{m}$ erhältst du folgenden Betrag für den Streckfaktor:
$\vert m \vert =\dfrac{5}{7}$
LösungDie Streckfaktoren kannst du mit den folgenden Regeln bestimmen:
Stehen Ursprungs- und Bildfigur auf einer Seite des Streckzentrums, dann haben beide Figuren die gleiche Ausrichtung und der Streckfaktor ist positiv.
Liegt jedoch das Streckzentrum zwischen Ursprungs- und Bildfigur, dann haben die Figuren eine umgekehrte Ausrichtung und der Streckfaktor ist negativ.
Den Betrag des Streckfaktors kannst du bestimmen, indem du die Entfernung eines beliebigen Bildpunktes zum Streckzentrum durch die Entfernung seines Ursprungspunktes zum Streckzentrum teilst.
Beispiel:
$\vert m \vert =\dfrac{\overline{A'Z}}{\overline{AZ}}$
Damit ergibt sich:
- Liegt das Streckzentrum zwischen den Punkten $B$ und $B'$ und ist $\overline{A'Z}=6~\text{m}$ und $\overline{AZ}=8~\text{m}$, erhältst du einen Streckfaktor von $m=-\frac{3}{4}$.
- Steht die Bildfigur auf dem Kopf und sind als Längen $\overline{B'Z}=2~\text{m}$ und $\overline{BZ}=5~\text{m}$ gegeben, ergibt sich $m=-\frac{2}{5}$.
- Haben Ursprungs- und Bildfigur die gleiche Orientierung und gilt $\overline{CZ}=2~\text{m}$ und $\overline{C'Z}=5~\text{m}$, folgt $m=\frac{5}{2}$.
- Liegen Ursprungs- und Bildfigur links vom Streckzentrum und ist $\overline{AZ}=4~\text{m}$ und $\overline{A'Z}=3~\text{m}$, erhältst du $m=\frac{3}{4}$.
-
Beschrifte die Zeichnung.
TippsDie Bildfigur besteht aus Bildpunkten. Die Bildpunkte werden immer mit einem dem Ursprungspunkt entsprechenden Großbuchstaben und einem Strich bezeichnet.
Alle Geraden durch Ursprungspunkte und ihre zugehörigen Bildpunkte schneiden sich im Streckzentrum.
LösungSo wird die Zeichnung beschriftet.
Die Ursprungsfigur besteht aus den Urspungspunkten, z. B. $A$.
Die Bildfigur besteht aus den Bildpunkten, z. B. $A'$.
Im Streckzentrum schneiden sich alle Geraden durch die Bild- und Ursprungspunkte.
-
Leite die richtigen Aussagen ab.
TippsNach einer zentrischen Streckung mit Streckfaktor $m$ ergibt sich für alle Längen der Bildfigur
$a'= \vert m \vert a$
LösungFolgende Aussagen sind falsch:
- Wird das Quadrat an $X$ mit einem Streckfaktor von $m=-2$ gestreckt, hat die resultierende Bildfigur einen Flächeninhalt von $30~\text{cm}^2$.
$a'= \vert m \vert a$
Daraus folgt mit $\vert m \vert =2$ und $a=3~\text{cm} $ für den Flächeninhalt der Bildfigur:
$A'=(a')^2=m^2 \cdot a^2=36~\text{cm}^2$
- Das Verhältnis der Strecken $\overline{AB}$ und $\overline{AC}$ beträgt $\dfrac{ \overline{AC}}{ \overline{AB} }=\sqrt{2}$. Streckt man die Figur an $Y$ mit einem Streckfaktor von $m=\sqrt{2}$ beträgt dieses Verhältnis an der Bildfigur: $\dfrac{ \overline{A'C'}}{ \overline{A'B'} }=2$.
$\dfrac{ \overline{A'C'}}{ \overline{A'B'} }=\dfrac{ \sqrt{2} \overline{AC}}{ \sqrt{2} \overline{AB} }=\dfrac{ \overline{AC}}{ \overline{AB} }=\sqrt{2}$
Folgende Aussagen sind korrekt:
- Wird das Quadrat an $Y$ mit einem Streckfaktor von $m=-2$ gestreckt, hat die resultierende Bildfigur einen Flächeninhalt von $36~\text{cm}^2$.
- Nach einer Streckung an einem beliebigen Punkt mit Streckfaktor $m=\frac{2}{3}$ beträgt eine beliebige Länge der Bildfigur das $\frac{2}{3}$-fache der entsprechenden Länge an der Ursprungsfigur.
- Wird eine Streckung mit $m=\frac{1}{2}$ durchgeführt, wird die Bildfigur immer kleiner als die Ursprungsfigur, und zwar unabhängig davon, ob an $X$ oder $Y$ gestreckt wird.
- Nach einer Streckung mit $m=-\frac{1}{2}$ an $X$ ebenso wie nach einer Streckung mit $m=-\frac{3}{2}$ an $Y$ liegt das Streckzentrum zwischen Ursprungs- und Bildfigur.
9.369
sofaheld-Level
6.600
vorgefertigte
Vokabeln
8.220
Lernvideos
38.700
Übungen
33.508
Arbeitsblätter
24h
Hilfe von Lehrkräften

Inhalte für alle Fächer und Klassenstufen.
Von Expert*innen erstellt und angepasst an die Lehrpläne der Bundesländer.
Testphase jederzeit online beenden
Beliebteste Themen in Mathematik
- Römische Zahlen
- Prozentrechnung
- Prozentrechnung - Übungen
- Primzahlen
- Geometrische Lagebezeichnungen
- Was ist eine Ecke?
- Rechteck
- Was ist eine Gleichung?
- Pq-Formel
- Binomische Formeln
- Trapez
- Flächeninhalt – Übungen
- Volumen Zylinder
- Potenzgesetze – Übungen
- Umfang Kreis
- Zehnerzahlen vergleichen und ordnen – Übungen
- Quadrat
- Zahlen sortieren – Übungen
- Division
- Binomische Formeln – Übungen
- Raute
- Brüche umwandeln Übungen
- Parallelogramm
- Ungleichungen – Übungen
- Polynomdivision
- Zahlen bis 1000 ordnen – Übungen
- Was Ist Eine Viertelstunde
- Terme mit Variablen aufstellen – Übungen
- Prisma
- Die Grundrechenarten – Übungen
- Mitternachtsformel
- Äquivalenzumformung
- Grundrechenarten Begriffe
- Größer Kleiner Zeichen
- Dreiecksarten
- Punkt-vor-Strich und Klammern-zuerst-Regel
- Aufbau von Dreiecken
- Quader
- Zahlen runden – Übungen
- Satz Des Pythagoras
- Ziffern und Stellenwerte – Übungen
- Dreieck Grundschule
- Koordinatensystem – Übungen
- Erste Binomische Formel
- Kreis
- Trigonometrie
- Trigonometrische Funktionen
- Standardabweichung
- Quadratische Gleichungen – Übungen
- Flächeninhalt