Über 1,6 Millionen Schüler*innen nutzen sofatutor!
  • 93%

    haben mit sofatutor ihre Noten in mindestens einem Fach verbessert

  • 94%

    verstehen den Schulstoff mit sofatutor besser

  • 92%

    können sich mit sofatutor besser auf Schularbeiten vorbereiten

Überblick: Integral, Stammfunktion, Integralfunktion

Du willst ganz einfach ein neues Thema lernen
in nur 12 Minuten?
Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
  • Das Mädchen lernt 5 Minuten mit dem Computer 5 Minuten verstehen

    Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.

    92%
    der Schüler*innen hilft sofatutor beim selbstständigen Lernen.
  • Das Mädchen übt 5 Minuten auf dem Tablet 5 Minuten üben

    Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.

    93%
    der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert.
  • Das Mädchen stellt fragen und nutzt dafür ein Tablet 2 Minuten Fragen stellen

    Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.

    94%
    der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.
Bewertung

Ø 4.8 / 4 Bewertungen
Die Autor*innen
Avatar
Team Digital
Überblick: Integral, Stammfunktion, Integralfunktion
lernst du in der 11. Klasse - 12. Klasse

Überblick: Integral, Stammfunktion, Integralfunktion Übung

Du möchtest dein gelerntes Wissen anwenden? Mit den Aufgaben zum Video Überblick: Integral, Stammfunktion, Integralfunktion kannst du es wiederholen und üben.
  • Benenne die Formeln mit dem passenden Fachbegriff.

    Tipps

    Das unbestimmte Integral gibt die Menge aller Stammfunktionen an, also eine Funktionsschar.

    Die Integralfunktion wird mithilfe eines bestimmten Integrals angegeben.

    Lösung

    In der Integralrechnung haben wir es mit einigen Fachbegriffen zu tun, die wir in ihrer Bedeutung und Berechnung unterscheiden müssen. Wir betrachten hier die Begriffe Stammfunktion, unbestimmtes Integral, bestimmtes Integral und Integralfunktion:

    Stammfunktion:
    $F(x)$ mit $\bigl(F(x)\bigr)' = f(x)$
    Eine Stammfunktion $F(x)$ ist eine Funktion, die abgeleitet wieder $f(x)$ ergibt. Dabei gibt es zu einer Funktion $f(x)$ immer mehrere Stammfunktionen, da additive Konstanten beim Ableiten wegfallen.

    unbestimmtes Integral:
    $\displaystyle \int f(x) ~\text{d}x = F(x) + c \quad (c \in \mathbb{R})$
    Ein unbestimmtes Integral hat keine Integrationsgrenzen. Es ergibt eine Funktionsschar, die für die Menge aller Stammfunktionen steht. Da die Integrationskonstante $c$ beim Ableiten wegfällt, gilt: $\bigl(F(x) + c\bigr)' = f(x)$.

    bestimmtes Integral:
    $\displaystyle\int\limits_{a}^{b} f(x) ~\text{d}x = F(b) - F(a)$
    Ein bestimmtes Integral beschreibt die orientierte Fläche, die der Funktionsgraph und die $x$-Achse zwischen den Integrationsgrenzen einschließen. Wir können es über den Hauptsatz der Differential- und Integralrechnung bestimmen, indem wir die Integrationsgrenzen in eine Stammfunktion einsetzen und die Differenz berechnen. Das Ergebnis ist eine Zahl.

    Integralfunktion:
    $I_a(t) = \displaystyle\int\limits_{a}^{t} f(x) ~\text{d}x$
    Eine Integralfunktion ist ein bestimmtes Integral, bei dem eine untere Grenze $a$ festgelegt wird und die obere Grenze $t$ variiert wird. Berechnen wir das bestimmte Integral mit der allgemeinen Variable $t$, so erhalten wir eine bestimmte Stammfunktion der Funktion $f(x)$.

  • Beschreibe, wie eine Integralfunktion mithilfe eines bestimmten Integrals aufgestellt wird.

    Tipps

    Für jede Stammfunktion gilt:

    $\bigl(F(x)\bigr)' = f(x)$

    Jede Integralfunktion $I_a(t)$ hat bei $a$ eine Nullstelle.

    Lösung

    Jede Integralfunktion ist eine Stammfunktion. Zusätzlich besitzt sie eine Nullstelle an der unteren Integrationsgrenze.
    Es kommen also nur Stammfunktionen als Integralfunktion in Frage, die mindestens eine Nullstelle haben.
    Um die Integralfunktion $I_a(t)$ anzugeben, berechnen wir das bestimmte Integral in den Grenzen $a$ und $t$. Das Ergebnis ist eine Funktion, die den Flächeninhalt in Abhängigkeit der Variable $t$ beschreibt.

    Beispiel:
    $\begin{array}{ll} I_1(t) &= \displaystyle \int\limits_{1}^{t} 2x^3 ~\text{d}x = \biggl[\dfrac{1}{2}x^4\biggr]_{1}^{t} \\ & \\ &= \dfrac{1}{2}t^4 - \dfrac{1}{2}\cdot 1^4 = \dfrac{1}{2}t^4 - \dfrac{1}{2} \end{array}$

    Es gilt: $I_1(1) = 0$, da jede Integralfunktion $I_a(t)$ bei $t = a$ eine Nullstelle hat.

  • Entscheide, ob die Beschreibungen und Beispiele für Stammfunktion, Integralfunktion, bestimmtes oder unbestimmtes Integral sprechen.

    Tipps

    Eine Integralfunktion $I_a(t)$ muss mindestens eine Nullstelle haben. Stammfunktionen gibt es auch ohne Nullstellen.

    Durch die Integrationsgrenzen wird ein Intervall bestimmt.

    Lösung

    Auch wenn Stammfunktion, Integralfunktion, bestimmtes und unbestimmtes Integral eng miteinander zusammenhängen, ist es wichtig, diese Begriffe zu unterscheiden.

    • Stammfunktion:
    Eine Stammfunktion einer Funktion $f(x)$ wird mit $\color{#99CC00}{\mathbf{F(x)}}$ (sprich 'groß F') bezeichnet. Dabei handelt es sich um eine beliebige Funktion, für die gilt: $\bigl(F(x)\bigr)' = f(x)$.
    Zum Beispiel ist $\color{#99CC00}{\mathbf{x^2 + 3}}$ eine Stammfunktion von $2x$, da gilt: $\bigl(x^2 + 3\bigr)' = 2x$.

    • Integralfunktion:
    Bei einer Integralfunktion $\color{#99CC00}{\mathbf{I_a(t)}}$ ist die untere Grenze auf den Wert $a$ festgelegt. Die obere Grenze ist mit $t$ variabel. Das Ergebnis ist eine bestimmte Stammfunktion, die bei $a$ eine Nullstelle besitzt.
    Zum Beispiel ist $\color{#99CC00}{\mathbf{4 - t^2}}$ eine Integralfunktion $I_2(t)$ zur Funktion $f(x) = {-}2x$ mit unterer Integrationsgrenze $a= 2$.

    • unbestimmtes Integral:
    Das unbestimmte Integral wird ohne Integrationsgrenzen geschrieben und beschreibt die Menge aller Stammfunktionen:
    $\displaystyle \int f(x) ~\text{d}x = \color{#99CC00}{\mathbf{F(x) + c}}$. Durch Hinzufügen der Integrationskonstante $c$ erhalten wir eine Funktionsschar.

    • bestimmtes Integral:
    Das bestimmte Integral hat eine obere und untere Integrationsgrenze. Wir können es mit dem Hauptsatz der Differential- und Integralrechnung durch Einsetzen der Grenzen in eine Stammfunktion berechnen. Das Ergebnis ist ein Zahlenwert, der eine Flächenbilanz zwischen Funktionsgraph und $x$-Achse beschreibt.
    Beispiel: $\displaystyle\color{#99CC00}{\mathbf{\int\limits_{0}^{2} e^x ~\text{d}x}} \color{black}{=} \Bigl[e^x\Bigr]_{0}^{2} = e^2 - e^0 = e^2 - 1 \approx 6{,}4$

    $ \Rightarrow$ Der Graph von $e^x$ schließt im Intervall $[0{;}1]$ eine Fläche von $6{,}4 ~[\text{FE}]$ mit der $x$-Achse ein.

  • Beurteile die Aussagen zur Integralrechnung.

    Tipps

    Jede Integralfunktion hat mindestens eine Nullstelle.

    Der Wert eines bestimmten Integrals lässt sich mit einer beliebigen Stammfunktion berechnen.

    Lösung

    Die Integralrechnung nutzt das Integrieren, gewissermaßen die Umkehrung des Ableitens, zur Berechnung von Flächen. Dabei müssen wir verschiedene Anwendungen unterscheiden.

    Dem Namen nach handelt es sich bei einer Stammfunktion und einer Integralfunktion jeweils um Funktionen. Eine Integralfunktion ist dabei eine bestimmte Stammfunktion, die mithilfe des bestimmten Integrals und einer festgelegten unteren Grenze bestimmt werden kann. Die obere Grenze beschreibt dabei die Variable der Funktion. Die Integralfunktion hat immer eine Nullstelle an der unteren Integrationsgrenze.
    $\Rightarrow$ Stammfunktionen und Integralfunktionen sind Funktionen. Das ist richtig.
    $\Rightarrow$ Jede Integralfunktion ist eine Stammfunktion. Das ist richtig.
    $\Rightarrow$ Jede Stammfunktion ist eine Integralfunktion. Das ist falsch – dies gilt nur für Stammfunktionen, die zumindest eine Nullstelle haben.

    Ein bestimmtes Integral $\displaystyle \int\limits_{a}^{b} f(x) ~\text{d}x\ \ $ steht für den orientierten Flächeninhalt, den der Graph der Funktion im Intervall $[a{;}b]$ einschließt. Zur Berechnung können wir eine beliebige Stammfunktion verwenden (Hauptsatz der Differential- und Integralrechnung).
    $\Rightarrow$ Wir können ein bestimmtes Integral mit einer Integralfunktion berechnen. Das ist richtig – eine Integralfunktion ist schließlich stets ein bestimmtes Integral.

    Das unbestimmte Integral gibt die Menge aller Stammfunktionen als Funktionsschar an. Im Gegensatz zum bestimmten Integral gibt es hier keine Integrationsgrenzen. Es wird also kein Intervall betrachtet.
    $\Rightarrow$ Bestimmtes und unbestimmtes Integral sind Zahlenwerte. Das ist falsch – dies gilt nur für das bestimmte Integral. Das unbestimmte Integral ist hingegen eine Funktionsschar.
    $\Rightarrow$ Ein unbestimmtes Integral hat keinen Integranden. Das ist falsch – der Integrand steht stets zwischen dem Integralzeichen und $\text{d}x$. Das unbestimmte Integral hat keine Integrationsgrenzen.

  • Bestimme die Integrale.

    Tipps

    Faktorregel:
    $\displaystyle \int k \cdot f(x) ~\text{d}x = {k \cdot F(x) + c}$

    Summenregel:
    $\displaystyle \int f(x) + g(x) ~\text{d}x = {F(x) + G(x) + c}$

    Beispiel:

    $\begin{array}{ll} \displaystyle \int 5x^2 - 4x^4 ~\text{d}x &= 5 \cdot \dfrac{1}{3}x^3 - 4 \cdot \dfrac{1}{5}x^5 + c \\ & \\ &= \dfrac{5}{3}x^4 - \dfrac{4}{5}x^5 + c \end{array}$

    Lösung

    Um eine ganzrationale Funktion zu integrieren, nutzen wir die folgenden Regeln:

    Potenzregel:
    $\displaystyle \int x^n ~\text{d}x = \frac{1}{n+1}x^{n+1} + c \quad (c\in \mathbb{R})$

    Faktorregel:
    $\displaystyle \int k \cdot f(x) ~\text{d}x = k \cdot F(x) + c \quad (c\in \mathbb{R}) $

    Summenregel:
    $\displaystyle \int f(x) + g(x) ~\text{d}x = {F(x) + G(x) + c} \quad (c\in \mathbb{R})$

    Beispiel 1:
    $\begin{array}{ll} \displaystyle \int 6x^2 ~\text{d}x &= 6 \cdot \dfrac{1}{2+1}x^{2+1} + c \\ & \\ &= \dfrac{6}{3}x^3 + c \\ & \\ &= 2x^3 +c \end{array}$

    Beispiel 2:
    $\begin{array}{ll} \displaystyle \int 3x^5 ~\text{d}x &= 3 \cdot \dfrac{1}{5+1}x^{5+1} + c \\ & \\ &= \dfrac{3}{6}x^6 +c \\ & \\ &= 0{,}5x^6 + c \end{array}$

    Beispiel 3:
    $\begin{array}{ll} \displaystyle \int 2x^3 - 12x^2 ~\text{d}x &= 2 \cdot \dfrac{1}{3+1}x^{3+1} - 12 \cdot \dfrac{1}{2+1}x^{2+1} + c \\ & \\ &= \dfrac{2}{4}x^4 - \dfrac{12}{3}x^3 + c\\ & \\ &= 0{,}5x^4 - 4x^3 + c \end{array}$

  • Entscheide, was im Graphen dargestellt ist.

    Tipps

    Eine additive Kontante verschiebt den Funktionsgraph in $y$-Richtung nach oben oder unten.

    Jede Integralfunktion hat mindestens eine Nullstelle.

    Lösung

    Wir betrachten die graphische Darstellung von Stammfunktion, Integralfunktion, bestimmtem und unbestimmtem Integral.

    Stammfunktion und Integralfunktionen sind jeweils Funktionen, wobei eine Integralfunktion $I_a(t)$ stets zumindest eine Nullstelle bei der unteren Integrationsgrenze $a$ hat.
    $\Rightarrow$ Der erste Graph ist eine Stammfunktion, da er keine Nullstelle hat. Das heißt, es kann sich nicht um eine Integralfunktion handeln. Der dritte Graph stellt entsprechend die Integralfunktion $I_{{-}2}$ oder $I_{1}$ dar, da er an diesen Punkten Nullstellen hat.

    Das unbestimmte Integral
    $\displaystyle \int f(x) ~\text{d}x = F(x) + c~$
    ist eine Funktionsschar, bei der die einzelnen Graphen durch die Integrationskonstante in $y$-Richtung nach oben oder unten verschoben sind.
    $\Rightarrow$ Die zweite Abbildung veranschaulicht ein unbestimmtes Integral.

    Ein bestimmtes Integral steht für die Flächenbilanz von orientierten Flächen, die der Graph und die $x$-Achse in den Integrationsgrenzen einschließen.
    $\Rightarrow$ Die vierte Abbildung zeigt ein bestimmtes Integral mit den Grenzen $-0{,}5$ und $3{,}5$.

30 Tage kostenlos testen
Mit Spaß Noten verbessern
und vollen Zugriff erhalten auf

8.156

sofaheld-Level

6.601

vorgefertigte
Vokabeln

7.930

Lernvideos

37.078

Übungen

34.333

Arbeitsblätter

24h

Hilfe von Lehrer*
innen

laufender Yeti

Inhalte für alle Fächer und Klassenstufen.
Von Expert*innen erstellt und angepasst an die Lehrpläne der Bundesländer.

30 Tage kostenlos testen

Testphase jederzeit online beenden