Über 1,6 Millionen Schüler*innen nutzen sofatutor!
  • 93%

    haben mit sofatutor ihre Noten in mindestens einem Fach verbessert

  • 94%

    verstehen den Schulstoff mit sofatutor besser

  • 92%

    können sich mit sofatutor besser auf Schularbeiten vorbereiten

Sinussatz – Erklärung und Herleitung

Du willst ganz einfach ein neues Thema lernen
in nur 12 Minuten?
Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
  • Das Mädchen lernt 5 Minuten mit dem Computer 5 Minuten verstehen

    Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.

    92%
    der Schüler*innen hilft sofatutor beim selbstständigen Lernen.
  • Das Mädchen übt 5 Minuten auf dem Tablet 5 Minuten üben

    Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.

    93%
    der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert.
  • Das Mädchen stellt fragen und nutzt dafür ein Tablet 2 Minuten Fragen stellen

    Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.

    94%
    der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.
Bewertung

Ø 3.7 / 54 Bewertungen
Die Autor*innen
Avatar
Team Digital
Sinussatz – Erklärung und Herleitung
lernst du in der 9. Klasse - 10. Klasse

Sinussatz – Erklärung und Herleitung Übung

Du möchtest dein gelerntes Wissen anwenden? Mit den Aufgaben zum Video Sinussatz – Erklärung und Herleitung kannst du es wiederholen und üben.
  • Gib an, welche Aussagen zu Sinus und Sinussatz richtig sind.

    Tipps

    Der Sinus ist definiert als das Längenverhältnis von Gegenkathete des betrachteten Winkels zur Hypotenuse. Die Hypotenuse ist die längste Seite in einem rechtwinkligen Dreieck.

    Lösung

    Der Sinus kann nur in rechtwinkligen Dreiecken angewendet werden. Dies erschließt sich auch aus seiner Definition: $\sin (\alpha) = \dfrac{\text{Gegenkathete von~} \alpha}{\text{Hypotenuse}}$
    Die Begriffe Gegenkathete und Hypotenuse gibt es nur im rechtwinkligen Dreieck. Die Hypotenuse liegt gegenüber des rechten Winkels und die Gegenkathete von $\alpha$ liegt gegenüber von $\alpha$.

    Der Sinus ist als Längenverhältnis im rechtwinkligen Dreieck definiert. Wir können ihn nicht herleiten.

    Der Sinussatz hingegen kann in beliebigen Dreiecken angewendet werden. Er lautet: $\dfrac{a}{\sin (\alpha)} = \dfrac{b}{\sin (\beta)} = \dfrac{c}{\sin (\gamma)}$

    Den Sinussatz in beliebigen Dreiecken können wir hingegen mithilfe des Sinus herleiten. Dazu teilen wir das beliebige Dreieck durch Einzeichnen einer Höhe in zwei rechtwinklige Dreiecke, in denen wir den Sinus anwenden können.

  • Vervollständige die Herleitung des Sinussatzes.

    Tipps

    Der Sinus im rechtwinkligen Dreieck ist wie folgt definiert:
    $\sin (\alpha) = \dfrac{\text{Gegenkathete von } \alpha}{\text{Hypotenuse}}$

    Du kannst eine Gleichung umformen, indem du auf beiden Seiten der Gleichung mit demselben Wert multiplizierst.

    Lösung

    Wir können das Dreieck $ABC$ durch Einzeichnen der Höhe auf der Seite $c$ in zwei Dreiecke unterteilen. Da die Höhe senkrecht auf der Seite $c$ stehen muss, sind die beiden Dreiecke rechtwinklig.
    Wir können also in beiden Dreiecken den Sinus anwenden. Dieser ist wie folgt definiert:
    $\sin (\alpha) = \dfrac{\text{Gegenkathete von } \alpha}{\text{Hypotenuse}}$

    • Für das Dreieck $1$ gilt: $\quad\sin(\alpha) =\frac{h}{b}$
    • Für das Dreieck $2$ gilt: $\quad\sin(\beta) = \frac{h}{a}$
    Wir lösen die beiden Gleichungen nach $h$ auf, indem wir in der ersten Gleichung mit $b$ und in der zweiten Gleichung mit $a$ multiplizieren und erhalten:

    • bei Dreieck $1$: $\quad h=\sin(\alpha) \cdot b$
    • bei Dreieck $2$: $\quad h=\sin(\beta) \cdot a$
    Wir können die beiden Terme für $h$ gleichsetzen:

    $\sin(\alpha) \cdot b = \sin(\beta) \cdot a$

    Dies können wir umformen, indem wir durch $\sin(\alpha)$ und $\sin(\beta)$ teilen, und erhalten:

    $\begin{array}{rrrrr} \sin(\alpha) \cdot b& = & \sin(\beta) \cdot a & |: \sin(\beta) \\ \dfrac{\sin(\alpha) \cdot b}{\sin(\beta)}& = & a & |: \sin(\alpha)& \\ \dfrac{b}{\sin(\beta)} & = & \dfrac{a}{\sin(\alpha)} && \\ \end{array}$

  • Formuliere den Sinussatz.

    Tipps

    Du kannst den Sinussatz durch Äquivalenzumformungen umschreiben.

    Die Umkehrrechnung zum Multiplizieren ist das Dividieren und umgekehrt. Auch ein Bruch stellt eine Division dar:
    $\dfrac{a}{\sin (\alpha)} = a : \sin (\alpha)$

    Lösung

    Wir kennen den Sinussatz in der Form:
    $\dfrac{a}{\sin (\alpha)} = \dfrac{b}{\sin (\beta)}$
    Wir können diese Gleichung durch Äquivalenzumformungen auch in anderer Form darstellen:

    $\begin{array}{rrlr} \dfrac{a}{\sin (\alpha)} & = & \dfrac{b}{\sin (\beta)} & |\cdot \sin (\alpha) \\ a & = & \dfrac{b}{\sin (\beta)} \cdot \sin (\alpha) &|\cdot \sin (\beta) \\ a \cdot \sin(\beta) & = & b \cdot \sin(\alpha) & \\ \end{array}$

    Und wir formen weiter um:

    $\begin{array}{rrlr} a \cdot \sin(\beta) & = & b \cdot \sin(\alpha) & | : \sin(\alpha) \\ \dfrac{a \cdot \sin(\beta)}{\sin(\alpha)} &=& b & | : a \\ \dfrac{\sin(\beta)}{\sin(\alpha)} &=& \dfrac{b}{a} & | : a \\ \end{array}$

    Folgende Gleichungen stellen jedoch nicht den Sinussatz dar:

    • $a \cdot \sin (\alpha) = b \cdot \sin (\beta)$
    • $\sin (\alpha) \cdot \sin (\beta) = a \cdot b$
    • $\sin (\alpha) - \sin (\beta) = a - b$
  • Leite den zweiten Teil des Sinussatzes her.

    Tipps

    Du kannst den Sinussatz mitilfe des Sinus herleiten. Dazu musst du zuerst rechtwinklige Dreiecke erzeugen, da der Sinus nur im rechtwinkligen Dreieck gilt.

    Ziel ist es, die Seiten $b$ und $c$ und die Winkel $\beta$ und $\gamma$ miteinander in Beziehung zu setzen.

    Lösung

    Wir können das Dreieck $ABC$ durch Einzeichnen der Höhe auf der Seite $a$ in zwei Dreiecke unterteilen. Da die Höhe senkrecht auf der Seite $a$ stehen muss, sind die beiden Dreiecke rechtwinklig.
    Wir können also in beiden Dreiecken den Sinus anwenden. Dieser ist wie folgt definiert:
    $\sin (\alpha) = \dfrac{\text{Gegenkathete von} ~\alpha}{\text{Hypotenuse}}$

    • Für das obere Dreieck gilt: $\quad\sin(\gamma) =\frac{h}{b}$
    • Für das untere Dreieck gilt: $\quad\sin(\beta) = \frac{h}{c}$
    Wir lösen die beiden Gleichungen nach $h$ auf, indem wir in der ersten Gleichung mit $b$ und in der zweiten Gleichung mit $c$ multiplizieren und erhalten:

    • beim oberen Dreieck: $\quad h=\sin({\gamma}) \cdot b$
    • beim unteren Dreieck: $\quad h=\sin({\beta}) \cdot c$
    Wir können die beiden Terme für $h$ gleichsetzen:

    $\sin({\gamma}) \cdot b = \sin({\beta}) \cdot c$

    Dies können wir noch umformen und erhalten:

    $\dfrac{c}{\sin (\gamma)} = \dfrac{b}{\sin (\beta)}$

  • Gib den Sinussatz an.

    Tipps

    Versuche dir die Struktur der Formel zu erschließen.

    Gegenüber von der Seite $a$ liegt der Winkel $\alpha$.
    Gegenüber von der Seite $b$ liegt der Winkel $\beta$.
    Gegenüber von der Seite $c$ liegt der Winkel $\gamma$.

    Lösung

    Der Sinussatz darf in beliebigen Dreiecken angewendet werden. Er lautet:

    $\dfrac{a}{\sin (\alpha)} = \dfrac{b}{\sin (\beta)} = \dfrac{c}{\sin (\gamma)}$

    Es ist also stehts das Verhältnis zwischen einer Dreiecksseite und dem Sinus des gegenüberliegenden Winkels gleich.

    Wir können mithilfe des Sinussatzes in einem Dreieck eine fehlende Seitenlänge oder auch einen fehlenden Winkel berechnen.

  • Berechne die Seite $a$ mithilfe des Sinussatzes.

    Tipps

    Überlege dir, welche der drei Winkel du verwenden musst.

    Auf dem Taschenrechner gibt es eine Taste (sin), mit welcher du den Sinus eines bestimmten Winkels bestimmen kannst.

    Achte darauf, richtig zu runden. Betrachte dazu die Stelle hinter der Rundungsstelle: Ist diese $5$ oder größer, so wird aufgerundet. Andernfalls wird abgerundet.

    Lösung

    Der Sinussatz lautet:
    $\dfrac{a}{\sin (\alpha)} = \dfrac{c}{\sin (\gamma)}$

    Der Winkel $\alpha$ liegt gegenüber der Seite $a$. In unserem Dreieck gilt $\alpha = 48^\circ$. Außerdem gilt: $c=15$ und $\gamma = 92^\circ$.

    Wir schreiben den Sinussatz um:

    $a \cdot \sin (\gamma) = c \cdot \sin (\alpha)$

    und setzen wie oben zugeordnet ein:

    $a \cdot \sin (92^\circ) =15\cdot \sin (48^\circ)\quad |: \sin (92^\circ) $

    $a = 15 \cdot \sin (48^\circ): \sin (92^\circ) $

    Wir geben den Term in den Taschenrechner ein und erhalten für $a$ auf eine Stelle nach dem Komma gerundet:

    $a= 14,7842483... \approx 14,8$

30 Tage kostenlos testen
Mit Spaß Noten verbessern
und vollen Zugriff erhalten auf

8.090

sofaheld-Level

6.601

vorgefertigte
Vokabeln

7.922

Lernvideos

36.998

Übungen

34.261

Arbeitsblätter

24h

Hilfe von Lehrer*
innen

laufender Yeti

Inhalte für alle Fächer und Klassenstufen.
Von Expert*innen erstellt und angepasst an die Lehrpläne der Bundesländer.

30 Tage kostenlos testen

Testphase jederzeit online beenden